Subscribe free to our newsletters via your
. Space Travel News .




SOLAR DAILY
Cleaner and greener cities with integrated transparent solar cells
by Staff Writers
Barcelona, Spain (SPX) Oct 24, 2013


This shows semi-transparent organic solar cells in four different colors. Credit: ICFO.

Imagine buildings in which the windows allow the sun's light to enter, and at the same time capture the energy from the sun needed to meet all their energy needs. In this seemingly futuristic scenario, the windows become productive solar cells that help us decrease our reliance on fossil fuels and advance towards a greener and cleaner environment.

In a recent study carried out at ICFO, researchers have fabricated an optimal organic solar cell with a high level of transparency and a high power conversion efficiency, a promising step forward towards affordable, clean, more widely utilized and urban integrated renewable energies. The results of this study have just been published in Nature Photonics.

Today's commercial solar panels are, for the most part, composed of wafer-based crystalline silicon solar cells which are quite efficient in converting solar radiation into electrical power (approximately 15% conversion efficiency), but with several important obstacles standing in the way of maximum exploitation. To begin, they must be precisely oriented to receive direct sunlight and even then are limited in their ability to absorb diffused light.

In addition, they are heavy, opaque, and take up a great deal of space.

Organic solar cell technology has been around for about thirty years, however nowadays it is starting to attract substantial interest due to its low production cost.

While organic cells have not yet reached the efficiency values of silicon based cells, these Organic Photovoltaic (OPV) cells have proven to be lighter in weight, more flexible (they are capable of adapting to curved surfaces), and even more sensitive to low light levels as well as indirect sun light, making them one of the most appealing photovoltaic technologies for many everyday applications.

Among such advantages, a property that makes them even more interesting is their potential to be implemented as a semi-transparent device.

However, OPVs, like any other photovoltaic technology achieves its maximum light to electricity conversion efficiency with opaque devices. To turn such cells into transparent ones, the back metal electrode must be thinned down to just a few nanometers, drastically reducing the device's capacity to collect sunlight. ICFO researchers have been able to implement a semi-transparent cell incorporating a photonic crystal and reach a cell performance almost as good as its opaque counterpart.

By adding such extra photonic crystal to the cell, ICFO's scientists were able to increase the amount of infrared and ultraviolet light absorbed by the cell, reaching a 5.6% efficiency while preserving a transparency almost indistinguishable from normal glass.

The results in efficiency and transparency make these cells an extremely competitive product for Building-Integrated Photovoltaic (BIPV) technologies. To reach the adequate architectural look, the color of the cells may be tuned by simply changing the layer configuration of the photonic crystal.

Jordi Martorell, UPC Professor at ICFO and leader of the study, explains that "applications for this type of technology in BIPV are just a few steps away, but the technology has not reached its saturation point yet. ICFO's discovery opens the path for innovation to other industrial applications of transparent photovoltaics. In the midterm we expect to reach the extremely high transparencies and efficiencies needed to power up devices such as displays, tablets, smart phones, etc..."

The future looks promising for these devices. A recently approved European project entitled SOLPROCEL will allow a consortium of top European researchers and industries led by ICFO to boost the study of the capabilities of these cells, improving their stability and lifetimes as well as obtaining the material needed to substantially raise their efficiency.

Ref: Rafael Betancur, Pablo Romero-Gomez, Alberto Martinez-Otero, Xavier Elias, Marc Maymo and Jordi Martorell, Transparent polymer solar cells employing a layered light trapping architecture doi:10.1038/nphoton.2013.276 1: SOLPROCEL: Solution Processed High Performance Transparent Organic Photovoltaic Cells.

.


Related Links
The Institute of Photonic Sciences
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Simpler Manufacturing Cuts Cost Of Organic-Inorganic Hybrid Solarcells
Singapore (SPX) Oct 24, 2013
In the near future, solar panels will not only be more efficient but also a lot cheaper and affordable for everyone, thanks to research by Nanyang Technological University (NTU) scientists. This next generation solar cell, made from organic-inorganic hybrid perovskite materials, is about five times cheaper than current thin-film solar cells, due to a simpler solution-based manufacturing pr ... read more


SOLAR DAILY
Takeoff of Proton LV with US satellite may be put off until Oct 25

Technical glitch will delay launch of European space mission

Astrium awarded three new contracts by ESA for Ariane 6 and Ariane 5 ME launchers

Sounding Rocket Calibrates NASA's SDO Instrument

SOLAR DAILY
India sets November 5 for Mars mission launch

MAVEN Launch Preps on Schedule

Phobos-Grunt-2: Russia to probe Martian moon by 2022

Russian scientists set sights on space

SOLAR DAILY
Crowdfunded Lunar Spacecraft Reaches Funding Milestone

LADEE Continues To Settle Into Operational Lunar Orbit

NASA's moon landing remembered as a promise of a 'future which never happened'

Russia could build manned lunar base

SOLAR DAILY
SwRI study finds that Pluto satellites' orbital ballet may hint of long-ago collisions

Archival Hubble Images Reveal Neptune's "Lost" Inner Moon

New Horizons - Late in Cruise, and a Binary Ahoy

Pluto Science Conference Exceeds Expectations

SOLAR DAILY
Count of discovered exoplanets passes the 1,000 mark

Iowa research team see misaligned planets in distant system

Astronomer see misaligned planets in distant system

Water discovered in remnants of extrasolar rocky world orbiting white dwarf

SOLAR DAILY
Spacecraft Integration, Assembly and Test

ESA drives forward with all-electric telecom satellites

Russian booster 'not the culprit in saiga kill'

Proton booster back in service after mishap

SOLAR DAILY
Is China Challenging Space Security

NASA's China policy faces mounting pressure

Ten Years of Chinese Astronauts

NASA vows to review ban on Chinese astronomers

SOLAR DAILY
Is the 'Christmas Comet' cracking up?

Comet ISON Appears Intact

Spacecraft images of asteroid reinforce telescope observations

Telescopes Large and Small Team Up to Study Triple Asteroid 87 Sylvia




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement