Space Travel News  
Clay Studies Alter View Of Early Mars Environment

Despite this evidence that carbon dioxide did not provide a warm, wet atmosphere, it is possible that other greenhouse gases, such as methane, helped create the ancient conditions that shaped modern-day Mars.
by Staff Writers
Fayetteville AR (SPX) Jul 19, 2007
A study of the thermodynamics of clays found on Mars suggests that little carbon dioxide could have been present during their formation, which contradicts a popular theory of the early Martian atmosphere and will send researchers looking for other explanations for clay formation. Vincent Chevrier of the University of Arkansas and Francois Poulet and Jean-Pierre Bibring of the Universite Paris-Sud in Orsay, France, reported their findings in the journal Nature.

Gullies, valleys and clay formations found on Mars seem to point to a wet past for the Red Planet. Almost all clays formed on earth do so in the presence of water or under extremely humid conditions. These clay remnants of ancient Mars had previously led scientists to hypothesize that the earliest era on the planet, the Noachian period, had a carbon-dioxide-rich atmosphere that created a warm, wet surface with liquid water -- ideal for creating clays.

Chevrier used thermodynamic calculations to examine possible historic conditions on the planet. These calculations look at the equilibrium conditions of the clay deposits on Mars with respect to different relevant other mineral phases -- carbonates, sulfates, iron oxides -- to extrapolate the surface environment at the time of their formation. He made the assumption that the clays would form on the surface of Mars in the presence of liquid water as they do on Earth.

In a carbon-dioxide-rich environment, clay formation would be accompanied by carbonate formation, but current studies of Mars have found no such compounds. Chevrier's calculations show that, given current conditions, the carbon dioxide pressure would have been low in the Noachian atmosphere.

"If you had a thick atmosphere of carbon dioxide, you should have abundant carbonates," Chevrier said. "So far no one has seen even a grain of carbonate."

Despite this evidence that carbon dioxide did not provide a warm, wet atmosphere, it is possible that other greenhouse gases, such as methane, helped create the ancient conditions that shaped modern-day Mars. It also is possible that impacts generated heat and energy that could have warmed the Mars surface, creating liquid water. However, both of these hypotheses present their own enigmas: If methane was present, where did it go? And how do you relate impacts to the formation of clays? On Mars, thousands of square kilometers are covered by clay deposits up to 100 meters thick - not the hallmark of a single impact event.

Another possibility is that some of these chemicals - the carbonates and the methane - may be present deep below the surface of Mars. To address the question of the underground presence of these materials will require a Mars rover with a probe. Until then, the history of the early Martian atmosphere remains an enigma.

"Thermodynamics can give you the conditions, but not the process," Chevrier said.

Chevrier is a postdoctoral researcher in the W.M. Keck Laboratory for Space Simulation at the Arkansas Center for Space and Planetary Sciences. The Space Center is a joint center in the J. William Fulbright College of Arts and Sciences and the College of Engineering.

Related Links
University of Arkansas, Fayetteville
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


CU-Boulder Proposal Selected As Finalist For Mission To Probe Past Climate Of Mars
Boulder CO (SPX) Jan 10, 2007
NASA has selected a team led by the University of Colorado at Boulder as one of two finalists for an orbiting space mission slated to launch in 2011 to probe the past climate of Mars, including its potential for harboring life over the eons. The team, led by CU-Boulder's Laboratory for Atmospheric and Space Physics, will receive $2 million from NASA for a nine-month "Phase A" study for the proposed Mars Atmosphere and Volatile Evolution mission, or MAVEN.







  • Ares Team Validates Manufacturing Processes For Common Bulkhead Demonstration
  • NASA Awards Upper Stage Engine Contract For Ares Rockets
  • ATV Starts Journey To Kourou
  • Boeing To Bid For Ares I Instrument Unit Avionics Contract

  • Spaceway 3 Is Delivered To The Spaceport For Its Mid-August Ariane 5 Launch
  • Russian Space Firm Signs 14 Deals For Commercial Rocket Launches
  • Sea Launch To Resume Zenit Launches In October
  • Russia Proton-M Booster Puts US Satellite Into Orbit

  • Space Shuttle Endeavour Moved To Launch Pad
  • Improved Shuttle Readied For Trip To Space Station
  • NASA Shuttle Endeavour Set To Launch August 7
  • Shuttle Endeavour To Move To Pad Crew Ready For Countdown Test

  • NASA Holds Briefing With First Female Station Commander And Crew
  • Station Crew Prepares For Spacewalk And STS-118 Shuttle Endeavour Mission
  • Atlantis Readies For Columbus Mission
  • Space Station Crew Gets Rid Of Trash

  • Washington Conference To Examine Impact Of Civilian Space Travel On Culture And Economy
  • First Malaysian Astronaut To Take Off For Space Station October 10
  • Wyle To Prepare First Passengers For Virgin Galactic Maiden Spaceflight
  • Russia Launches Genesis 2 On Converted SS-18 ICBM Launcher

  • Chinese Astronauts Begin Training For Spacewalk
  • China Prepares To Select New Taikonauts
  • Dongfanghong 4 Ready For More International Satellite Orders
  • China To Launch Third Sino-Brazilian Satellite In September

  • Lockheed Martin Reaches Major Milestone For The Mule Robotic Vehicle Engineering Evaluation Unit
  • Eurobot Makes A Splash
  • Team SpelBots Take On Robotic Titans At RoboCup 2007
  • Japanese Humanoid Is Working In The Rain

  • Layers Exposed In Crater Near Mawrth Vallis
  • Clay Studies Alter View Of Early Mars Environment
  • MDA Secures Role On Preparations For European Mars Rover Mission
  • Opportunity Waiting For Dust To Settle

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement