Space Travel News  
Clark School Researchers Develop Two-Dimensional Invisibility Cloak

The invisibility cloak device is a two-dimensional pattern of concentric rings created in a thin, transparent acrylic plastic layer on a gold film.
by Staff Writers
College Park MD (SPX) Jan 03, 2008
Harry Potter may not have talked much about plasmonics in J. K. Rowling's fantasy series, but University of Maryland researchers are using this emerging technology to develop an invisibility cloak that exists beyond the world of bespectacled teenage wizards.

A research team at Maryland's A. James Clark School of Engineering comprised of Professor Christopher Davis, Research Scientist Igor Smolyaninov, and graduate student Yu-Ju Hung, has used plasmon technology to create the world's first invisibility cloak for visible light. The engineers have applied the same technology to build a revolutionary superlens microscope that allows scientists to see details of previously undetectable nanoscale objects.

Generally speaking, when we see an object, we see the visible light that strikes the object and is reflected. The Clark School team's invisibility cloak refracts (or bends) the light that strikes it, so that the light moves around and past the cloak, reflecting nothing, leaving the cloak and its contents "invisible."

The invisibility cloak device is a two-dimensional pattern of concentric rings created in a thin, transparent acrylic plastic layer on a gold film. The plastic and gold each have different refractive properties. The structured plastic on gold in different areas of the cloak creates "negative refraction" effects, which bend plasmons-electron waves generated when light strikes a metallic surface under precise circumstances-around the cloaked region.

This manipulation causes the plasmon waves to appear to have moved in a straight line. In reality they have been guided around the cloak much as water in a stream flows around a rock, and released on the other side, concealing the cloak and the object inside from visible light. The invisibility that this phenomenon creates is not absolutely perfect because of energy loss in the gold film.

The team achieved this invisibility under very specialized conditions. The researchers' cloak is just 10 micrometers in diameter; by comparison, a human hair is between 50 to 100 micrometers wide. Also, the cloak uses a limited range of the visible spectrum, in two dimensions. It would be a significant challenge to extend the cloak to three dimensions because researchers would need to control light waves both magnetically and electronically to steer them around the hidden object. The technology initially may work only for small objects of specific controlled shape.

The team also has used plasmonics to develop superlens microscopy technology, which can be integrated into a conventional optical microscope to view nanoscale details of objects that were previously undetectable.

The superlens microscope could one day image living cells, viruses, proteins, DNA molecules, and other samples, operating much like a point-and-shoot camera. This new technology could revolutionize the capability to view nanoscale objects at a crucial stage of their development. The team believes they can improve the resolution of their microscope images down to about 10 nanometers-one ten thousandth of the width of a human hair.

A large reason for the success of the group's innovations in both invisibility and microscopy is that surface plasmons have very short wave lengths, and can therefore move data around using much smaller-scale guiding structures than in existing devices. These small, rapid waves are generated at optical frequencies, and can transport large amounts of data. The group also has made use of the unique properties of metamaterials, artificially structured composites that help control electromagnetic waves in unusual ways using plasmonic phenomena.

The diverse applications the group has derived from their plasmonics research is an example of the ingenuity of researchers approaching new and dynamic technologies that offer broad and unprecedented capabilities. The research has attracted a great deal of attention within the scientific community, industry and government agencies. Related plasmonics research offers applications for military and computer chip technologies, which could benefit from the higher frequencies and rapid data transfer rates that plasmons offer.

The team's research has been funded by the National Science Foundation and Clark School Corporate Partner BAE Systems.

Smolyaninov and Davis have published an article in the journal Science about their superlens microscope technology, titled "Magnifying Superlens in the Visible Frequency Range." The group and their colleagues from Purdue University will also soon publish a paper about their invisibility cloak research. A manuscript describing the invisibility cloak is available online here.

Related Links
A. James Clark School of Engineering
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Top 10 Advances In Materials Science In The Last 50 Years
Oxford, UK (SPX) Jan 03, 2008
What are the defining discoveries and great developments that are shaping the way we use materials and technologies today? Elsevier's Materials today magazine has compiled a list of the top ten most significant advances in materials science over the last 50 years. The top ten includes advances that have altered all our daily lives. Some have completely changed the research arena, and others have opened up new possibilities and capabilities.







  • 100 Years Of German Aerospace
  • NASA J-2X Powerpack Testing Commences At Stennis Space Center
  • Dawn Of The Ion Age
  • NASA To Begin Testing Of Engine That Will Power Ares Rockets

  • Ariane 5 Wraps Up 2007 With Its Sixth Dual-Satellite Launch
  • Ariane 5 rockets puts Africa's first satellite into space
  • Sixth Ariane 5 Mission Of 2007 Set For December 20 Launch
  • Lightning Protection For The Next Generation Spacecraft

  • US shuttle Atlantis won't fly on January 10: NASA
  • NASA eyes faulty gauge wires as source of shuttle problems
  • NASA aims for early January launch
  • NASA Targets Space Shuttle Atlantis Launch For January 10

  • Progress M-62 docks Space Station
  • Russian rocket delivers Christmas presents to space station
  • Russian ship detaches from space station
  • SpaceX Completes Dragon Spacecraft Demonstration Systems Review For Berth At ISS

  • Russia sees end of road for space tourism
  • MIT seeks funding for elastic spacesuit
  • SPACEHAB Announces Successful ARCTUS Mid-Air Recovery Test
  • Russia To Launch Space Base For Missions To Moon And Mars After 2020

  • China Reports Fourteen Potential Astronauts In Training For Three Seats
  • ISRO Saw String Of Successes In 2007
  • First Chinese Satellite Conglomerate Beams Into Operation
  • President Hu: China Joins Nations With Capability Of Deep Space Exploration

  • ESA Training Team ATV
  • Honda's ASIMO robot gets smarter
  • Toyota's new robot can play the violin, help the aged
  • Humanoid teaches dentists to feel people's pain: researchers

  • New Observations Slightly Decrease Mars Impact Probability
  • Mars Rovers Find Evidence Of Habitable Niche As Perilous Third Winter Approaches
  • Global Map Reveals Mineral Distribution On Mars
  • How Mars Could Have Been Warm And Wet But Limestone-Free

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement