Subscribe free to our newsletters via your
. Space Travel News .




FLORA AND FAUNA
Caught in the act: Study probes evolution of California insect
by Staff Writers
Houston TX (SPX) May 19, 2014


Researchers used a combination of ecological fieldwork and genomic assays to see how natural selection is playing out across the genome of Timema cristinae, a California stick insect that is evolving into two unique species. Image courtesy M. Muschick and University of Sheffield. For a larger version of this image please go here.

A first-of-its-kind study this week suggests that the genomes of new species may evolve in a similar, repeatable fashion - even in cases where populations are evolving in parallel at separate locations. The research is featured on the cover of the May 16 issue of Science.

A team of evolutionary biologists at Rice University, the University of Sheffield and eight other universities used a combination of ecological fieldwork and genomic assays to see how natural selection is playing out across the genome of a Southern California stick insect that is in the process of evolving into two unique species.

"Speciation is the evolutionary process that gives rise to new species, and it occurs when barriers prevent two groups of populations from exchanging genes," said Rice co-author Scott Egan.

"One way to study how speciation occurs is to look for examples where partial reproductive barriers exist but where genes are still exchanged."

The stick insect Timema cristinae is one such example. Timema are closely related to "walking sticks," plant-eating insects that look like twigs. Timema's shape and color act as natural camouflage and help them avoid being eaten by predators, such as birds. More than a dozen unique species of Timema have evolved to feed on specific plants in California and northern Mexi

One of these, T. cristinae, is found in two distinct varieties. One variety, or ecotype, feeds on the thin, needle-like leaves of a shrub called Adenastoma and features a distinct white stripe on its back that serves as camouflage. The other ecotype has no stripe and feeds on Ceanothus, a plant with wide green leaves where the stripe would stand out.

"Populations of T. cristinae on the two host plants have evolved many differences in their physical form while still exchanging genes," said Egan, a Huxley Faculty Fellow in Ecology and Evolutionary Biology at Rice.

"These same populations have also evolved barriers to gene flow. We call this process 'speciation with gene flow,' and evolutionary biologists have long wondered if the genetic basis for this process is highly repeatable and if the genes involved are spread out across the whole genome or in a few discrete regions."

To find out whether this was the case, Egan and a dozen co-authors led by University of Sheffield biologist Patrik Nosil conducted four years of detailed genomic and ecological tests. They first had to sequence the genome for T. cristinae and identify which portions of the genome corresponded to particular biological functions.

They then collected about 160 T. cristinae from the wild. Samples were collected at several geographic locations and were equally split between the ecotypes on the two host plants.

"We resequenced the genome of each individual that we collected and looked at which genes were differentiated between populations adapted to different host plants," Nosil said.

"Because we also conducted an experiment in the field measuring evolution in real time, we gained information on how natural selection is pulling these populations apart."

For example, the team found that many of the genetic differences were related to the biochemical function of metal ion binding, and metals are known to influence differences in pigmentation and mandible shape between the two T. cristinae ecotypes.

Previous ecological studies have shown that Timema do not migrate long distances. Because of this, the team expected to find evidence of localized gene flow among individuals collected at specific geographic locations. The genomic tests confirmed this, but they also revealed a pattern in the way that natural selection was playing out at each of the localities.

"In particular, we found that there were regions of the genome that exhibited significant differences between populations from host plant 1 and host plant 2, regardless of where the individuals were collected," Nosil said.

That suggested that evolution might be occurring in the same repeatable fashion at each location. To further test this, the team devised an experiment to gather genomic data from individuals that were actively under selection.

"We took individuals from a mixed population of the striped versus the no-striped ecotype, and we transplanted them back into nature onto the two host plants in five different sets," Egan said.

"We allowed them to go an entire generation, and then we resampled those populations, resequenced the genome of the survivors and compared those to the ancestors that we started with a year before. We tried to match up the allele frequency shifts in this experiment with the genome-level differentiation that we observed in our genome-resequencing populations. And what we found was that many of the regions that were highly differentiated in nature were the exact same regions that were responding to our selection experiment."

Egan said it was previously impossible to conduct this kind of study because of the expense of genomic tests. Though the genomes of many plant, animal and microbial species have been sequenced over the past decade, most of those are model organisms.

Scientists use model organisms to study critical biological processes, but Egan said the study of nonmodel organisms is often the key to ecological questions, including those related to how the environment influences natural selection and speciation.

"The world of genomics is beginning to open up for people like me who don't study model organisms," Egan said. "This is allowing us to address, in new ways, questions that Darwin posed over 150 years ago."

Study co-authors include Victor Soria-Corrasco, Aaron Comeault and Timothy Farkas, all of the University of Sheffield; Zachariah Gompert of Utah State University; Thomas Parchman of the University of Nevada, Reno; Spencer Johnston of Texas A and M University; Alex Buerkle of the University of Wyoming; Jeffrey Feder of the University of Notre Dame; Jens Bast of the University of Gottingen, Germany; Tanja Schwander of the University of Lausanne, Switzerland; and Bernard Crespi of Simon Fraser University, Canada. The research was supported by the European Research Council, Utah State University and the Wellcome Trust Centre for Human Genetics.

.


Related Links
Rice University
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
European bison released into wild Carpathian range
Armenis, Romania (AFP) May 18, 2014
Seventeen European bison were released in Romania on Saturday into the wild Carpathian mountain range, one of the largest reintroductions of the endangered mammal in Europe. The animals which came from Sweden, Germany, Switzerland and Italy, were blessed by a local Orthodox priest in the southwestern village of Armenis, in the Tarcu mountains of the Southern Carpathians. The event marked ... read more


FLORA AND FAUNA
SpaceX supply capsule heads back to Earth

Replacing Russian-made rocket engines is not easy

Pre-launch processing begins for the O3b Networks satellites

US sanctions against Russia had no effect on International Launch Services

FLORA AND FAUNA
MAVEN Solar Wind Ion Analyzer Will Look at Key Player in Mars Atmosphere Loss

Against the current with lava flows

Opportunity In Search Of Aluminum-Hydroxyl Clays

NASA wants greenhouse on Mars by 2021

FLORA AND FAUNA
LRO View of Earth

Saturn in opposition tonight, will appear next to the moon

Russia to begin Moon colonization in 2030

Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

FLORA AND FAUNA
Dwarf planet 'Biden' identified in an unlikely region of our solar system

Planet X myth debunked

WISE Finds Thousands Of New Stars But No Planet X

New Horizons Reaches the Final 4 AU

FLORA AND FAUNA
Giant telescope tackles orbit and size of exoplanet

Odd planet, so far from its star

New Exomoon Hunting Technique Could Find Solar System-like Moons

Length of Exoplanet Day Measured for First Time

FLORA AND FAUNA
Competition of the multiple Gortler modes in hypersonic boundary layer flows

New Craft Will Be America's First Space Lifeboat in 40 Years

Space Launch System Structural Test Stands to be Built at Marshall Space Flight Center

ATK Validates MegaFlex Solar Array For NextGen Solar Electric Propulsion Missions

FLORA AND FAUNA
Moon rover Yutu comes closer to public

The Phantom Tiangong

New satellite launch center to conduct joint drill

China issues first assessment on space activities

FLORA AND FAUNA
Rosetta's target comet is becoming active

NASA Astronauts Go Underwater to Test Tools for a Mission to an Asteroid

25-foot asteroid comes within 186,000 miles of Earth

Halley's Comet-linked meteor shower to peak Tuesday morning




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.