Space Travel News  
BIO FUEL
Catalytic hydrogenation of CO2 to methanol
by Staff Writers
Dalian, China (SPX) Mar 24, 2021

Researchers achieved for the first time low-temperature high-efficiency hydrogenation of CO2 to methanol, with a long working life over sulfur vacancy-rich few-layered MoS2, as well as remarkably higher activity and selectivity than those of the commercial Cu/ZnO/Al2O3 catalyst.

Efficient conversion of CO2 is strategically significant for alleviating the energy crisis and achieving the goal of carbon neutrality. One promising conversion route is the hydrogenation of CO2 to methanol using a renewable energy-based "green hydrogen" source.

Traditional metal oxide catalysts for this reaction typically require a high temperature (>300 oC), which tends to promote undesired reverse water-gas shift (RWGS) side reactions, thus producing a large amount of CO as the by-product.

Introduction of transition metal components onto metal oxides can promote the activation of H2, thereby reducing the reaction temperature, but this also facilitates excessive hydrogenation of CO2 to CH4, leading to lowered methanol selectivity. Further improvement of the performance of conventional metal/metal oxide catalysts for low-temperature CO2 hydrogenation to methanol is severely restricted by the tradeoff between their activity and selectivity.

Recently, a group led by Prof. DENG Dehui from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in collaboration with Prof. WANG Ye from Xiamen University, achieved for the first time low-temperature high-efficiency hydrogenation of CO2 to methanol, with a long working life over sulfur vacancy-rich few-layered MoS2, as well as remarkably higher activity and selectivity than those of the commercial Cu/ZnO/Al2O3 catalyst.

Their work which was published in Nature Catalysis, opens up a new way for the conversion of CO2 with low energy consumption and high efficiency.

They found that the sulfur vacancy-rich few-layered MoS2 could simultaneously activate and dissoCiate CO2 and H2 at low temperatures and even at room temperature, thereby facilitating the low-temperature hydrogenation of CO2 to methanol with high activity and selectivity.

In addition, they found that the RWGS reaction and excessive hydrogenation of methanol to CH4 were effectively suppressed. At 180 oC, 94.3% methanol selectivity for a CO2 conversion of 12.5% was achieved over the catalyst; this result was better than that obtained with the commercial Cu/ZnO/Al2O3 catalyst and previously reported catalysts.

The activity and selectivity were steadily maintained for over 3000 hours over the MoS2 catalyst, rendering it a promising candidate for industrial applications. In situ characterizations combined with theoretical calculations demonstrated that the in-plane sulfur vacancies on MoS2 were the active centers for catalyzing the highly selective hydrogenation of CO2 to methanol.

"This work reveals the potential of in-plane vacancies in two-dimensional materials for catalysis and provides a novel strategy for the development of new catalysts to be used in CO2 hydrogenation" said Prof. DENG.

Research paper


Related Links
Dalian Institute Of Chemical Physics, Chinese Academy Sciences
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Aviation leaders launch sustainable-fuel emissions study on a commercial passenger jet
Berlin, Germany (SPX) Mar 19, 2021
A partnership of aerospace specialists has launched the world's first in-flight emissions study using 100 percent Sustainable Aviation Fuel (SAF) on a wide-body commercial passenger aircraft. Airbus, the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR), Rolls-Royce and SAF producer Neste have teamed up to start the pioneering 'Emission and Climate Impact of Alternative Fuels' (ECLIF3) project looking into the effects of 100 percent SAF on aircraft emissions and performance. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
BIO FUEL
Is there life on mars today and where

New study challenges long-held theory of fate of Martian Water

Three bacterial strains discovered on space station may help grow plants on Mars

Perseverance SuperCam science instrument delivers first results

BIO FUEL
China plans to build research station on moon's south pole: chief designer

Skoltech and MIT explore human landing system architectures for Moon landings

A dose of Moonlight

Engineers propose solar-powered lunar ark as 'modern global insurance policy'

BIO FUEL
Juno reveals dark origins of one of Jupiter's grand light shows

SwRI scientists image a bright meteoroid explosion in Jupiter's atmosphere

Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon

BIO FUEL
ASU scientists determine origin of strange interstellar object

SwRI researcher theorizes worlds with underground oceans support, conceal life

There might be many planets with water-rich atmospheres

How the habitability of exoplanets is influenced by their rocks

BIO FUEL
Peraton awarded US Army hypersonic testing and evaluation contract

Launch Vehicle and Missile Ascent Trajectories

Soyuz rocket gets new paint job for first time in over 50 years

SpaceX launches 22nd cluster of Starlink satellites

BIO FUEL
China advances space cooperation in 2020: blue book

China selects astronauts for space station program

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

BIO FUEL
The world's oldest crater from a meteorite isn't an impact crater after all

Scientists unearth meteorite from the birth of the solar system

Asteroid 2001 FO32 will safely pass by Earth March 21

Rare meteorite recovered in UK after spectacular fireball









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.