Space Travel News  
WOOD PILE
Cascading use is also beneficial for wood
by Staff Writers
Munich, Germany (SPX) Dec 14, 2017


The illustration shows the concept of cascading the use of wood with its individual stages.

Another ten years - that is approximately how long sustainable forestry will be able to satisfy the continuously growing demand for wood. In Germany and Europe, new concepts are therefore being discussed for more responsible and efficient industrial use of the renewable, but still limited wood resources. Researchers at the Technical University of Munich (TUM) are using data from a European research project to analyze the potential efficiency of multiple use between harvesting and combustion of wood.

Does the cascading use of wood really lead to increased resource efficiency? For example, if the raw wood is first used to make construction elements, then slats for a table, and finally chipped and turned into chipboard before being burned for energy in a power plant? To answer this question, Michael Risse and Professors Gabriele Weber-Blaschke and Klaus Richter from the Chair of Wood Science at TUM set out to find suitable assessment methods.

A cascading system composed of many suppliers, manufacturers, and users is complex and costly. The material flows within and between the cascade steps are numerous and interwoven. As a theory, the concept has been described for years and has also been scientifically proven to save fossil resources, reduce greenhouse gas emissions, and increase value creation. But so far, a targeted examination of resource efficiency has not yet been performed. Since biologically generating wood differs fundamentally from producing synthetic raw materials, it is important to examine whether and to what extent cascading use of renewable raw materials pays off in terms of efficiency.

In order to account for the characteristic features of cascading use, wood researcher Michael Risse applied the holistic life cycle approach and analyzed the exergy of all materials used, the internal recycling processes, and the consumption of other primary resources, such as the forest land areas required. Exergy refers to the percentage of energy that can be converted into work.

Savings primarily at the start of the production chain
In two scenarios, the TUM researchers compared the path of one metric ton of scrap wood with the provision of the same functions using fresh wood. In the first scenario, the recovered wood was initially processed into sawn wood and then two subsequent times into chipboard in a cascading system. In the reference scenario, the same products were manufactured, but this time out of fresh wood.

The result: In cascading use, the wood is utilized significantly more efficiently at a rate of 46 percent, compared to single use at 21 percent. The biggest savings are achieved at the beginning of the production chain due to the reduced use of fresh wood, which in turn reduces the required forest land area. Cascading use remains more efficient during the further processing of the wood, but to a significantly lesser extent. In both scenarios, the production of chipboard consumes the most resources, particularly the process of drying and gluing.

Resource-efficient processing still in its infancy
In real-world industrial use, cascading use is still in its infancy, as the necessary logistics processes and adapted process technology are not yet available. Furthermore: "Energetic utilization still has priority over the material use of wood," lamented Professor Klaus Richter, who holds the Chair. Almost half of the 60 million metric tons of forest timber harvested each year are used to generate energy, either directly or within industrial processes.

The German Renewable Energy Sources Act (EEG) still encourages such usage until 2019, e.g. by subsidizing the generation of heat from wood energy with feed-in tariffs or by granting investment subsidies for heating installations such as wood pellet or wood chip heating systems. This one-sided incentive was already criticized in the comprehensive climate protection report for agriculture and forestry conducted in 2016, to which employees of the Chair of Wood Science also contributed.

Today, only a third of the recovered wood generated in Germany is being converted into chipboard; according to Richter, approximately seven million metric tons end up being burned directly in order to generate heat and electricity in power plants. For the wood scientist, this is at least one step too few. He and his team of researchers advocate a more intensive material use of wood: "Over the mid-term, we need to utilize wood more efficiently, i.e. multiple times as a material, before we burn or turn it into pellets. Its material properties do not stand in the way of cascading use. However, the processing and use of wood needs to be adapted from a planning and conceptual standpoint so that multiple use becomes a reality."

According to doctoral candidate Michael Risse, additional analyses in the context of cascading use are also essential: "For example, during the efficiency analysis, the scarcity of the individual primary natural resources should also be taken into account." For one, his published study does not take into account what is called the 'substitution effect', which makes another weighty argument for cascading use: "The use of wood products helps to avoid greenhouse gas emissions that result during the production of non-wood products such as steel or concrete - and that applies equally for each additional cascading stage," Professor Richter explained. "Furthermore, wood is the only material that stores carbon - throughout its entire life cycle."

This way, the carbon bound during the growth of the tree is removed from the atmosphere and is only released again at the end of the cascade - which should last as long as possible. "However, theoretical analyses alone won't cut it. We need action from policymakers and the industry," Richter emphasized.

Michael Risse, Gabriele Weber-Blaschke and Klaus Richter: Resource efficiency of multifunctional wood cascade chains using LCA and exergy analysis, exemplified by a case study for Germany, Resources, Conservation and Recycling 126, 141-152, 2017. DOI:

WOOD PILE
African deforestation not as great as feared
New Haven CT (SPX) Dec 14, 2017
The loss of forests in Africa in the past century is substantially less than previously estimated, an analysis of historical records and paleontology evidence by Yale researchers shows. Previous estimates put deforestation at 35% to 55% on the continent since 1900. The new analysis estimates closed-canopy forests have shrunk by 21.7%, according to findings published Dec. 11 in the journal ... read more

Related Links
Technical University of Munich
Forestry News - Global and Local News, Science and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WOOD PILE
WOOD PILE
Space program should focus on Mars, says editor of New Space

EU exempts fuel for ExoMars mission from Russian sanctions

NASA's oldest Mars rover survives another harsh winter

Mars Rover Team's Tilted Winter Strategy Works

WOOD PILE
December's 'supermoon' expected to be bigggest, brightest of 2017

Japan signals growing support for Deep Space Gateway concept

Moon's crust underwent resurfacing after forming from magma ocean

Russia tests new spaceship set to deliver people, cargo to moon

WOOD PILE
New Horizons Corrects Its Course in the Kuiper Belt

Wrapping up 2017 one year out from MU69

Jupiter Blues

Research bolsters possibility of plate tectonics on Europa

WOOD PILE
Two Super-Earths around red dwarf K2-18

U of T researcher finds Earth-like conditions in little-known exoplanet - and discovers a new planet

A New Spin to Solving Mystery of Stellar Companions

The CHEOPS scientific instrument is complete

WOOD PILE
Nozzle Assemblies Complete for Exploration Mission-1 Solid Rocket Boosters

Rocket Lab to launch rocket from New Zealand

SpaceX's Elon Musk to launch his own car into deep space

ISRO eyes one rocket launch a month in 2018

WOOD PILE
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

WOOD PILE
New simulations suggest meteors explode from the inside

B612 Asteroid Institute provides valuable analysis to discovery of First Interstellar Object

Metal asteroid Psyche is all set for an early visit from NASA

Rosetta details a comet's key ingredients









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.