Subscribe free to our newsletters via your
. Space Travel News .




FARM NEWS
Calcium waves help the roots tell the shoots
by Staff Writers
Madison WI (SPX) Apr 07, 2014


Simon Gilroy and colleagues showed what long had been suspected but long had eluded scientists: that calcium is involved in rapid plant cell communication, as discovered in Arabidopsis thaliana (above). No one had ever been able to see it before. Image courtesy Oregon State University.

For Simon Gilroy, sometimes seeing is believing. In this case, it was seeing the wave of calcium sweep root-to-shoot in the plants the University of Wisconsin-Madison professor of botany is studying that made him a believer.

Gilroy and colleagues, in a March 24, 2014 paper in the Proceedings of the National Academy of Sciences, showed what long had been suspected but long had eluded scientists: that calcium is involved in rapid plant cell communication.

It's a finding that has implications for those interested in how plants adapt to and thrive in changing environments. For instance, it may help agricultural scientists understand how to make more salt- or drought-tolerant plants.

"How do you think plants live?" Gilroy asks. "If I poke you, I see an instant response. You move away. Plants live in a slightly different world. They are rooted to the ground, literally, and they respond to the world either by growing or creating chemicals."

Calcium is involved in transmitting information in the cells of humans and other animals, contracting muscles, sending nerve signals and more.

In plants, scientists believed it had to also play a role in processing information and sending rapid signals so that plants can respond quickly to their environments.

Imagine you are a plant being eaten by a caterpillar: "It's like a lion chewing your leg," says Gilroy. "If an insect is chewing your leaf, you're gone unless you determine something effective immediately."

But no one had ever been able to see it before. Even Gilroy's team found it by accident.

The team was using a specific calcium sensor they thought wasn't going to work. They speculated it could serve as a control in their studies.

The sensor's brightness changes in the presence of calcium, displayed on screen as a change from green to red through a process known as fluorescence resonance energy transfer, or FRET. Typically, this particular sensor is so sensitive to calcium it is nearly always red.

But when researchers applied stress to the tip of a plant's roots - a high concentration of sodium chloride salt - it triggered a wave of red that traveled rapidly from the root to the top of the plant.

"We were kind of like, 'Why is it even working?' says Gilroy. "It was probably telling us we were looking in the wrong realm. It's like we could only hear the people shouting and we couldn't hear the talking."

The calcium wave, a flush of red on an otherwise green palette, traveled on a scale of milliseconds, traversing about eight plant cells per second - too quick to be explained by simple diffusion of salt.

"It fit with a lot of our models," Gilroy says. "But the idea that it's a wave is one step beyond what our models would predict."

Within 10 minutes of applying a small amount of salt to the plants' roots, typical stress response genes were turned on in the plant.

Also turned on was the machinery to make more of a protein channel called two pore channel 1 (TPC1). Within one-to-two minutes, there was 10 times more of the building blocks needed to make the channel, which is thought to be involved in calcium signaling.

Gilroy and his team then looked at plants with a defect in TPC1. They had a much slower calcium wave - about 25 times slower - than plants with normal TPC1. When they studied plants expressing more of the TPC1 protein, the calcium wave moved 1.7 times faster.

Plants with more channels also grew larger and contained more chlorophyll than plants with normal or mutated TPC1 when grown in salt water.

The protein channel is present in all land plants, says Gilroy, and it's found throughout the plant. This is one of the many reasons it surprised the team to learn the calcium wave moves only through specific cells in the plant, like electrical signals moving through nerve cells in humans and other animals.

"We weren't expecting that," Gilroy says. "It means specific cell types have specific functions ... there must be something special about those cells. We're really at the beginning."

The lab is now looking at the molecular machinery that makes up TPC1, to figure out how the parts of the channel work.

And now that the scientists know that calcium talks, the volume is turned up. The work is just getting started.

"We can hear the screaming," says Gilroy. "Now we're trying to see what the vocal chords are doing."

.


Related Links
University of Wisconsin-Madison
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





FARM NEWS
China's COFCO to acquire 51% of agri-firm Noble
Beijing (AFP) April 02, 2014
China's state-owned grain giant COFCO is to take a majority stake in the agricultural commodities subsidiary of Hong Kong-based Noble Group, the firms said Wednesday, in its latest global acquisition. Noble Agri will become a joint venture between the two, with a consortium of international investors taking part in the all-cash deal alongside COFCO. The exact purchase price was not divul ... read more


FARM NEWS
Soyuz ready for Sentinel-1A satellite launch

Boeing wins contract to design DARPA Airborne Satellite Launch

Arianespace's seventh Soyuz mission from French Guiana is readied for liftoff next week

NASA Seeks Suborbital Flight Proposals

FARM NEWS
The Opposition of Mars

Mars yard ready for Red Planet rover

Mars One building simulated colony to vet potential colonists

Cleaner NASA Rover Sees Its Shadow in Martian Spring

FARM NEWS
Unique camera from NASA's moon missions sold at auction

Expeditions to the Moon: beware of meteorites

A Wet Moon

ASU camera creates stunning mosaic of moon's polar region

FARM NEWS
Dwarf planet 'Biden' identified in an unlikely region of our solar system

Planet X myth debunked

WISE Finds Thousands Of New Stars But No Planet X

New Horizons Reaches the Final 4 AU

FARM NEWS
Lick's Automated Planet Finder: First robotic telescope for planet hunters

Space Sunflower May Help Snap Pictures of Planets

NRL Researchers Detect Water Around a Hot Jupiter

UK joins the planet hunt with Europe's PLATO mission

FARM NEWS
Advancing the Technology Readiness Of SLS Adaptive Controls

Airbus Defence and Space to cooperate with Snecma on electric propulsion

Boeing on Schedule to Deliver World's First All-Electric Satellites

Europe's IXV atmospheric reentry demonstrator ready for final tests

FARM NEWS
Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

FARM NEWS
Cosmic collision creates mini-planet with rings

Hubble Space Telescope Spots Mars-Bound Comet Sprout Multiple Jets

Comet lander awakes from long hibernation

First Ring System Around Asteroid




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.