Space Travel News  
BIO FUEL
Breaking down stubborn cellulose
by Staff Writers
Styria, Austria (SPX) Oct 16, 2017


Hydrolytic enzymes break down cellulose better and thus pave the way to competitive biofuels. In the picture: Manuel Eibinger, first author of the study and PostDoc at the Institute for Biotechnology and Biochemical Engineering at TU Graz. Image courtesy Lunghammer - TU Graz.

Biofuels obtained from biomass are becoming increasingly important. Apart from biomethane, however, they cannot be produced efficiently, cheaply and sustainably since the current technological complexity and costs are still too high. Partly to blame is cellulose, a polysaccharide and plant constituent which is not water soluble and thus difficult to process.

Typically, biorefineries use a mix of hydrolytically active enzymes which utilize water molecules to breakdown plant material - as happens in natural degradation processes. Recently, oxidative enzymes were discovered which utilize oxygen and work together with hydrolytic enzymes to break down cellulose more efficiently. But how exactly these oxidative enzymes - also known as LPMOs (lytic polysaccharide monooxygenases) - work, was not known. At this stage that the Graz scientists got to work.

Enzymes under the scanning force microscope
Using atomic force microscopy, the researchers were able to observe enzymes at work on the surface of cellulose particles for the first time and provide direct evidence of their activity. For several years now, the Institute of Biotechnology and Biochemical Engineering has been working closely with the Graz Centre for Electron Microscopy.

For the study currently published in Nature Communications, the hydrolytically active enzyme Trichoderma reesei CBH I, which has been known for a long time, was observed in a first step. The enzyme adsorbs on the surface of a particle, moves along a polysaccharide chain and step by step cleaves off more and more small parts.

In a further step, it has been observed how the behaviour of the enzymes changes when LPMOs are added to the mix. And here the researchers could establish both that the LPMOs generated more binding sites on the surface for the hydrolytically active enzymes, and that the enzyme dynamics on the surface increased considerably.

A picture is worth a thousand words
This study will contribute to a better understanding of these processes at a basic research level, and in a further step will facilitate the production of biofuels. Usually, in chemistry we are focused on soluble products, which can be easily measured, to deepen the understanding of a reaction.

However, for a reaction taking place on a solid surface such an approach is not feasible. We wanted to observe and document the step before that, that is, the process of cellulose breakdown," says Manuel Eibinger, lead author of the study at the Institute of Biotechnology and Biochemical Engineering.

Bernd Nidetzky, head of the Institute of Biotechnology and Biochemical Engineering at TU Graz: "The saying comes to mind 'a picture is worth a thousand words'. In this study we wanted to document the processes as they occur in time. And this is what we managed to do."

This research topic is anchored in the Field of Expertise "Human and Biotechnology", one of the five strategic research foci at TU Graz.

Research paper

BIO FUEL
NGOs slam UN aviation agency plan for biofuels
Berlin (AFP) Oct 9, 2017
Nearly 100 environmental and poverty fighting groups jointly released a letter Tuesday slamming a UN proposal that backs large-scale use of biofuels in commercial planes. Extensive burning of biofuels would vastly expand the production of palm oil, which critics say drives deforestation, higher CO2 emissions and conflicts with indigenous peoples displaced from their land. The UN's Intern ... read more

Related Links
Graz University of Technology
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
BIO FUEL
Another Chance to Put Your Name on Mars

Lockheed Martin Reveals New Details to its Mars Base Camp Vision

Fresh Look at Old Data Yields Surprise Near Martian Equator

Methane belches kept water flowing on ancient Mars

BIO FUEL
Chinese moon missions delayed by rocket failure: report

Moon village the first stop to Mars: ESA

Russian space agency, NASA agree to co-build lunar-orbit space station

NASA, Roscosmos Sign Joint Statement on Researching, Exploring Deep Space

BIO FUEL
Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice

Global Aerospace Corporation to present Pluto lander concept to NASA

Pluto features given first official names

BIO FUEL
MATISSE to Shed Light on the Formation of Earth and Planets

Glenn Tests Thruster Bound for Metal World

Searching for Distant Worlds With a Flying Telescope

Scientists propose new concept of terrestrial planet formation

BIO FUEL
Arianespace to launch COSMO-SkyMed satellites manufactured by Thales

New Zealand opens first rocket launch site

Arianespace signs contract for 10 Vega and Vega C launchers

Launch Vehicle and Missile Ascent Trajectories

BIO FUEL
China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

UN official commends China's role in space cooperation

China's cargo spacecraft separates from Tiangong-2 space lab

BIO FUEL
Studies of 'Crater Capital' in the Baltics Show Impactful History

Unexpected Surprise: A Final Image from Rosetta

Hubble Observes the Farthest Active Inbound Comet Yet Seen

NASA's Near-Earth Asteroid CubeSat Goes Full Sail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.