Space Travel News  
SOLAR DAILY
Boron nitride separation process could facilitate higher efficiency solar cells
by Staff Writers
Atlanta GA (SPX) Aug 31, 2018

Rows of photovoltaic cells are shown atop a building on the Georgia Institute of Technology campus in Atlanta.

A team of semiconductor researchers based in France has used a boron nitride separation layer to grow indium gallium nitride (InGaN) solar cells that were then lifted off their original sapphire substrate and placed onto a glass substrate.

By combining the InGaN cells with photovoltaic (PV) cells made from materials such as silicon or gallium arsenide, the new lift-off technique could facilitate fabrication of higher efficiency hybrid PV devices able to capture a broader spectrum of light. Such hybrid structures could theoretically boost solar cell efficiency as high as 30 percent for an InGaN/Si tandem device.

The technique is the third major application for the hexagonal boron nitride lift-off technique, which was developed by a team of researchers from the Georgia Institute of Technology, the French National Center for Scientific Research (CNRS), and Institut Lafayette in Metz, France. Earlier applications targeted sensors and light-emitting diodes (LEDs).

"By putting these structures together with photovoltaic cells made of silicon or a III-V material, we can cover the visible spectrum with the silicon and utilize the blue and UV light with indium gallium nitride to gather light more efficiently," said Abdallah Ougazzaden, director of Georgia Tech Lorraine in Metz, France and a professor in Georgia Tech's School of Electrical and Computer Engineering (ECE).

"The boron nitride layer doesn't impact the quality of the indium gallium nitride grown on it, and we were able to lift off the InGaN solar cells without cracking them."

The research was published August 15 in the journal ACS Photonics. It was supported by the French National Research Agency under the GANEX Laboratory of Excellence project and the French PIA project "Lorraine Universite d'Excellence."

The technique could lead to production of solar cells with improved efficiency and lower cost for a broad range of terrestrial and space applications. "This demonstration of transferred InGaN-based solar cells on foreign substrates while increasing performance represents a major advance toward lightweight, low cost, and high efficiency photovoltaic applications," the researchers wrote in their paper.

"Using this technique, we can process InGaN solar cells and put a dielectric layer on the bottom that will collect only the short wavelengths," Ougazzaden explained.

"The longer wavelengths can pass through it into the bottom cell. By using this approach we can optimize each surface separately."

The researchers began the process by growing monolayers of boron nitride on two-inch sapphire wafers using an MOVPE process at approximately 1,300 degrees Celsius. The boron nitride surface coating is only a few nanometers thick, and produces crystalline structures that have strong planar surface connections, but weak vertical connections.

The InGaN attaches to the boron nitride with weak van der Waals forces, allowing the solar cells to be grown across the wafer and removed without damage. So far, the cells have been removed from the sapphire manually, but Ougazzaden believes the transfer process could be automated to drive down the cost of the hybrid cells. "We can certainly do this on a large scale," he said.

The InGaN structures are then placed onto the glass substrate with a backside reflector and enhanced performance is obtained. Beyond demonstrating placement atop an existing PV structure, the researchers hope to increase the amount of indium in their lift-off devices to boost light absorption and increase the number of quantum wells from five to 40 or 50.

"We have now demonstrated all the building blocks, but now we need to grow a real structure with more quantum wells," Ougazzaden said. "We are just at the beginning of this new technology application, but it is very exciting."

Research Report: "Heterogeneous Integration of Thin-Film InGaN-Based Solar Cells on Foreign Substrates with Enhanced Performance"


Related Links
Georgia Institute of Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
California takes another green step forward
(UPI) Aug 29, 2018
California legislators scored a win against the Trump administration by passing one of the nation's most ambitious clean energy bills, an advocacy group said. "The legislature finds and declares that the Public Utilities Commission, State Energy Resources Conservation and Development Commission, and State Air Resources Board should plan for 100 percent of total retail sales of electricity in California to come from eligible renewable energy resources and zero-carbon resources by December 31, 20 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
NASA's InSight passes halfway to Mars, instruments check in

Six Things About Opportunity'S Recovery Efforts

The Science Team Continues to Listen for Opportunity as Storm Diminishes

Planet-Encircling Dust Storm of Mars shows signs of slowing

SOLAR DAILY
Direct evidence of ice on Moon surface discovered

Bricks from Moon dust

There's definitely ice on the lunar poles

Scientists confirm ice exists at Moon's poles

SOLAR DAILY
Study helps solve mystery under Jupiter's coloured bands

Million fold increase in the power of waves near Jupiter's moon Ganymede

New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds

SOLAR DAILY
Infant exoplanet weighed by Hipparcos and Gaia

Infant exoplanet weighed by Hipparcos and Gaia

Discovery of a structurally 'inside-out' planetary nebula

Under pressure, hydrogen offers a reflection of giant planet interiors

SOLAR DAILY
Chinese private space company to launch first carrier rocket

GEOStar-3 mission success enabled by Aerojet Rocketdyne XR-5 Hall Thruster System

Stratolaunch announces new launch vehicles

Stennis Begins 5th Series of RS-25 Engine Tests

SOLAR DAILY
China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

China solicits international cooperation experiments on space station

SOLAR DAILY
NASA probe begins approach toward asteroid Bennu

Michigan meteor could help researchers understand near-Earth object threats

Why Asteroid Bennu? 10 Reasons

Earth mini-moons: Potential for exciting scientific and commercial opportunities









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.