Subscribe free to our newsletters via your
. Space Travel News .




FLORA AND FAUNA
Biophysicists unravel secrets of genetic switch
by Carol Clark
Atlanta GA (SPX) Sep 05, 2012


"I hope this kind of experiment will lead to better understanding of how our own DNA is compacted into chromosomes, and how it unravels locally to become expressed," says biophysicist Laura Finzi.

When an invading bacterium or virus starts rummaging through the contents of a cell nucleus, using proteins like tiny hands to rearrange the host's DNA strands, it can alter the host's biological course. The invading proteins use specific binding, firmly grabbing onto particular sequences of DNA, to bend, kink and twist the DNA strands. The invaders also use non-specific binding to grasp any part of a DNA strand, but these seemingly random bonds are weak.

Emory University biophysicists have experimentally demonstrated, for the fist time, how the nonspecific binding of a protein known as the lambda repressor, or C1 protein, bends DNA and helps it close a loop that switches off virulence. The researchers also captured the first measurements of that compaction.

Their results, published in Physical Review E, support the idea that nonspecific binding is not so random after all, and plays a critical role in whether a pathogen remains dormant or turns virulent.

"Our findings are the first direct and quantitative determination of non-specific binding and compaction of DNA," says Laura Finzi, an Emory professor of biophysics whose lab led the study. "The data are relevant for the understanding of DNA physiology, and the dynamic characteristics of an on-off switch for the expression of genes." C1 is the repressor protein of the lambda bacteriophage, a virus that infects the bacterial species E. coli, and a common laboratory model for the study of gene transcription.

The virus infects E. coli by injecting its DNA into the host cell. The viral DNA is then incorporated in the bacterium's chromosome. Shortly afterwards, binding of the C1 protein to specific sequences on the viral DNA induces the formation of a loop. As long as the loop is closed, the virus remains dormant. If the loop opens, however, the machinery of the bacteria gets hi-jacked: The virus switches off the bacteria's genes and switches on its own, turning virulent.

"The loop basically acts as a molecular switch, and is very stable during quiescence, yet it is highly sensitive to the external environment," Finzi says. "If the bacteria is starved or poisoned, for instance, the viral DNA receives a signal that it's time to get off the boat and spread to a new host, and the loop is opened. We wanted to understand how this C1-mediated, loop-based mechanism can be so stable during quiescence, and yet so responsive to switching to virulence when it receives the signal to do so."

Finzi runs one of a handful of physics labs using single-molecule techniques to study the mechanics of gene expression. In 2009, her lab proved the formation of the C1 loop. "We then analyzed the kinetics of loop formation and gained evidence that non-specific binding played a role," Finzi says. "We wanted to build on that work by precisely characterizing that role."

Emory undergraduate student Chandler Fountain led the experimental part of the study. He used magnetic tweezers, which can pull on DNA molecules labeled with miniscule magnetic beads, to stretch DNA in a microscope flow chamber. Gradually, the magnets are moved closer to the DNA, pulling it further, so the length of the DNA extension can be plotted against the applied force.

"You get a curve," Finzi explains. "It's not linear, because DNA is a spring. Then you put the same DNA in the presence of C1 protein and see how the curve changes. Now, you need more force to get to the same extension because the protein holds onto the DNA and bends it."

An analysis of the data suggests that, while the specific binding of the C1 protein forms the loop, the non-specific binding acts like a kind of zipper, facilitating the closure of the loop, and keeping it stable until the signal comes to open it.

"The zipper-like effect of the weaker binding sites also allows the genetic switch to be more responsive to the environment, providing small openings that allow it to breathe, in a sense," Finzi explains. "So the loop is never permanently closed."

The information about how the C1 genetic switch works may provide insights into the workings of other genetic switches.

"Single-molecule techniques have opened a new era in the mechanics of biological processes," Finzi says. "I hope this kind of experiment will lead to better understanding of how our own DNA is compacted into chromosomes, and how it unravels locally to become expressed."

Other authors on the paper include Sachin Goyal, formerly a post-doc in the Finzi lab; Emory cell biologist David Dunlap; and Emory theoretical physicist Fereydoon Family. The research was funded by the National Institutes of Health.

.


Related Links
Emory University
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Tigers take the night shift to coexist with people
East Lansing MI (SPX) Sep 05, 2012
Tigers don't have a reputation for being accommodating, but a new study indicates that the feared and revered carnivores in and around a world-renowned park in Nepal are taking the night shift to better coexist with their human neighbors. The revelation that tigers and people are sharing exactly the same space - such as the same roads and trails - of Chitwan National Park flies in the face of lo ... read more


FLORA AND FAUNA
First-Stage Fuel Loaded; Launch Weather Forecast Improves

NASA launches mission to explore radiation belts

ISRO to score 100 with a cooperative mission Sep 9

NASA Administrator Announces New Commercial Crew And Cargo Milestones

FLORA AND FAUNA
Curiosity Has a Photo Day

Marks of Laser Exam on Martian Soil

Opportunity Drives And Images Rock Outcrop

Opportunity Exceeds 35 Kilometers of Driving!

FLORA AND FAUNA
NASA's GRAIL Moon Twins Begin Extended Mission Science

Flags at half mast across US for Armstrong funeral

Walls of Lunar Crater May Hold Patchy Ice, LRO Radar Finds

Russia's moonshot hope 'not a dream'

FLORA AND FAUNA
The Kuiper Belt at 20: Paradigm Changes in Our Knowledge of the Solar System

e2v To Supply Large CMOS Imaging Sensors For Imaging Kuiper Belt Objects

Fly New Horizons through the Kuiper Belt

Hubble Discovers a Fifth Moon Orbiting Pluto

FLORA AND FAUNA
NASA's Kepler Discovers Multiple Planets Orbiting a Pair of Stars

How Old are the First Planets?

Kepler discovers planetary system orbiting 2 suns

NASA, Texas astronomers find first multi-planet system around a binary star

FLORA AND FAUNA
Russian Companies Design Space Tour Plane

Dream Chaser Team Completes Milestone

Space Launch System Giving Marshall, Langley Wind Tunnels a Workout

Space Launch System Giving Marshall, Langley Wind Tunnels a Workout

FLORA AND FAUNA
Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

China unveils ambitious space projects

FLORA AND FAUNA
NASA's Dawn Prepares for Trek Toward Dwarf Planet

Dawn Engineers Assess Reaction Wheel

Dawn Completes Intensive Phase Of Vesta Exploration

Planetary Resources Announces Agreement with Virgin Galactic for Payload Services




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement