Subscribe free to our newsletters via your
. Space Travel News .




INTERN DAILY
Bioelectric signals can be used to detect early cancer
by Staff Writers
Somerville MA (SPX) Feb 05, 2013


This shows a tumor within a tadplole embryo that has been labeled with red fluorescence to allow tracking. Credit: Brook Chernet; Tufts University School of Arts and Sciences.

Biologists at Tufts University School of Arts and Sciences have discovered a bioelectric signal that can identify cells that are likely to develop into tumors. The researchers also found that they could lower the incidence of cancerous cells by manipulating the electrical charge across cells' membranes.

"The news here is that we've established a bioelectric basis for the early detection of cancer," says Brook Chernet, doctoral student and the first author of a newly published research paper co-authored with Michael Levin, Ph.D., professor of biology and director of the Center for Regenerative and Developmental Biology.

Levin notes, "We've shown that electric events tell the cells what to do. The voltage changes are not merely a sign of cancer. They control and direct whether the cancer occurs or not."

Their paper, "Transmembrane Voltage Potential is an Essential Cellular Parameter for the Detection and Control of Tumor Development" will be published in the May 2013 issue of "Disease Models and Mechanisms" (available online on February 1).

Bioelectric signals underlie an important set of control mechanisms that regulate how cells grow and multiply. Chernet and Levin investigated the bioelectric properties of cells that develop into tumors in Xenopus laevis frog embryos.

In previous research, Tufts scientists have shown how manipulating membrane voltage can influence or regulate cellular behavior such as cell proliferation, migration, and shape in vivo, and be used to induce the formation or regenerative repair of whole organs and appendages.

In this study, the researchers hypothesized that cancer can occur when bioelectric signaling networks are perturbed and cells stop attending to the patterning cues that orchestrate their normal development.

Tumor Cells Exhibit a Bioelectric Signature
The researchers induced tumor growth in the frog embryos by injecting the samples with mRNAs (messenger RNA) encoding well-recognized human oncogenes Gli1, KrasG12D, and Xrel3. The embryos developed tumor-like growths that are associated with human cancers such as melanoma, leukemia, lung cancer, and rhabdomyosarcoma (a soft tissue cancer that most often affects children).

When the researchers analyzed the tumor cells using a membrane voltage-sensitive dye and fluorescence microscopy, they made an exciting discovery. "The tumor sites had unique depolarized membrane voltage relative to surrounding tissue," says Chernet. "They could be recognized by this distinctive bioelectric signal.

Changing Electrical Properties Lowers Incidence of Tumors
The Tufts biologists were also able to show that changing the bioelectric code to hyperpolarize tumor cells suppressed abnormal cell growth. "We hypothesized that the appearance of oncogene-induced tumors can be inhibited by alteration of membrane voltage," says Levin, "and we were right."

To counteract the tumor-inducing depolarization, they injected the cells with mRNA encoding carefully-chosen ion channels (proteins that control the passage of ions across cell membranes).

Using embryos injected with oncogenes such as Xrel3, the researchers introduced one of two ion channels (the glycine gated chloride channel GlyR-F99A or the potassium channel Kir4.1) known to hyperpolarize membrane voltage gradients in frog embryos. In both cases, the incidence of subsequent tumors was substantially lower than it was with embryos that received the oncogene but no hyperpolarizing channel treatment.

Experiments to determine the cellular mechanism that allows hyperpolarization to inhibit tumor formation showed that transport of butyrate, a known tumor suppressor, was responsible

The research was supported by grants from the National Institutes of Health (awards AR061988, AR055993) and the G. Harold and Leila Y. Mathers Charitable Foundation. Chernet, B. T. and Levin, M. (2013). Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dis. Model. Mech. 8 February [Epub ahead of print] doi:10.1242/dmm.010835

.


Related Links
Tufts University
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
Tomorrow's life-saving medications may currently be living at the bottom of the sea
Portland OR (SPX) Feb 04, 2013
OHSU researchers, in partnership with scientists from several other institutions, have published two new research papers that signal how the next class of powerful medications may currently reside at the bottom of the ocean. In both cases, the researchers were focused on ocean-based mollusks - a category of animal that includes snails, clams and squid and their bacterial companions. Sea li ... read more


INTERN DAILY
Zenit Engine Worked Normally

NASA Launches Rocket from Wallops Flight Facility in Virginia

Intelsat 27 Launch Unsuccessful

Floating platform unharmed after Zenit launch failure

INTERN DAILY
AAS Division For Planetary Sciences Issues Statement On Mars 2020 Program

Curiosity Maneuver Prepares for Drilling

Ridges on Mars suggest ancient flowing water

Changes on Mars Caused by Seasonal Thawing of CO2

INTERN DAILY
Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

INTERN DAILY
The PI's Perspective: The Seven-Year Itch

New Horizons Gets a New Year's Workout

Halfway Between Uranus and Neptune, New Horizons Cruises On

Dwarf planet Makemake lacks atmosphere

INTERN DAILY
Herschel Finds Past-Prime Star May Be Making Planets

Stars can be late parents

Researchers develop model for identifying habitable zones around star

TW Hydrae: There's more to astronomers' favorite planetary nursery than previously thought

INTERN DAILY
Flight Control Test-2 for SLS at ATK

Astrium wins ESA contracts to design Ariane 6 and continue development of Ariane 5 ME

NASA Awards Space Launch System Advanced Development Grants

NASA Engineers Resurrect And Test Mighty F-1 Engine Gas Generator

INTERN DAILY
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

INTERN DAILY
Dawn Look Backs

Prehistoric humans not wiped out by comet

Record Setting Asteroid Flyby

Commercial Asteroid Hunters Announce Plans For New Robotic Exploration Fleet




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement