. Space Travel News .




.
ENERGY TECH
Benefits of single atoms acting as catalysts in hydrogen-related reactions
by Staff Writers
Somerville MA (SPX) Mar 12, 2012

A team of researchers at Tufts University's School of Arts and Sciences and School of Engineering have discovered that individual atoms can catalyze industrially important chemical reactions such as the hydrogenation of acetylene, a development with potentially significant economic and environmental benefits. The team found that individual atoms of costly palladium (yellow peaks) when placed in the surface of copper metal (pink) help break apart hydrogen molecules (grey circles) into atoms, facilitating important chemical reactions. These single atom alloys save money because they use less precious metal than conventional catalysts. They also yield less chemical byproduct waste, so they are better for the environment. The research was published online and in print March 9, 2012 in Science (Image/Figure courtesy of Sykes Laboratory-Tufts University). Credit: Image/Figure courtesy of Sykes Laboratory-Tufts University

A team of researchers at Tufts University's School of Arts and Sciences and School of Engineering have discovered that individual atoms can catalyze industrially important chemical reactions such as the hydrogenation of acetylene, offering potentially significant economic and environmental benefits. The research appears in the March 9 issue of Science.

Hydrogenation - the addition of hydrogen atoms to an organic compound - is critical to the food, petrochemical and pharmaceutical industries. Hydrogenation requires the presence of a catalyst, usually a metal or an alloy of both precious and common metals, that allows the hydrogen atoms to bind with other molecules. It is difficult to produce alloys that are selective hydrogenation catalysts, able to attach the hydrogen atoms to specific sites of another molecule.

Tufts chemists and chemical engineers reported that when single atoms of palladium, an expensive precious metal, were added to copper, which is much cheaper and readily available, the resulting "single atom alloy" became active and selective for hydrogenation reactions.

This is the first published research to directly relate the arrangement of individual atoms in a metal alloy to their ability to catalyze hydrogenation reactions, according to E. Charles H. Sykes, associate professor of chemistry at Tufts and senior author on the paper. Sykes focuses much of his research on single molecule chemistry.

Industrial processes typically use small clumps of precious metal five to 10 nanometers wide on supports to make a catalyst. The Tufts scientists scattered single atoms of palladium less than half a nanometer wide onto a copper support. With palladium costing about $650 per ounce, the single atom alloy approach offers big cost savings.

"The chemical reactions we're looking at with smaller amounts of palladium use less energy and yield less chemical byproduct waste, hence they're better for the environment," said Sykes.

"These reactions are also more cost-effective because we're working with single atoms of precious metals, which is therefore much cheaper than big clusters of the material. Given that hydrogenation reactions are carried out on a scale of millions of tons per year, there is great potential for this new and less expensive type of catalytic surface."

For this research the Tufts team heated very small amounts of palladium to almost 1,000 degrees C. At that temperature individual atoms evaporated and embedded themselves on the copper surface about three inches away.

A scanning tunneling microscope, which records images of objects at the atomic level, enabled the team to see how these single atoms dispersed in the copper and how molecular hydrogen could then dissociate at individual, isolated palladium sites and spill over onto the copper surface layer.

"This is the first time there has been a definitive microscopic picture of the arrangement of atoms that promote a catalytic hydrogenation reaction. This picture is important because the catalytic hydrogenations that we're studying are vital to many industrial processes," added Sykes. "For example, in petroleum refining, catalytic hydrogenations are performed to make light and hydrogen-rich products like gasoline."

Georgios Kyriakou, research assistant professor of chemistry in the School of Arts and Sciences and first author of the paper; Maria Flytzani-Stephanopoulos, the Robert and Marcy Haber Endowed Professor in Energy Sustainability in the School of Engineering; and a joint Ph.D. student, Matthew Boucher, led testing that determined that the single atom alloy was more effective in catalyzing hydrogenation than denser mixtures of palladium and copper.

Mass spectrometry showed that the new alloy catalyzed the hydrogenation of both styrene and acetylene with greater than 95% selectivity.

"With the rising cost of precious metals and the increasing scarcity of these metals, learning more about these reactions is encouraging in the search for sustainable global solutions," said Flytzani-Stephanopoulos.

"We are looking at how these single-atom alloy catalysts could eventually be used as low-cost alternatives in hydrogenation and dehydrogenation processes for the production of 'green' agricultural chemicals, foods and pharmaceuticals," said Flytzani-Stephanopoulos.

Related Links
Tufts University
Powering The World in the 21st Century at Energy-Daily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries



And it's 3... 2... 1... blastoff! Discover the thrill of a real-life rocket launch.



.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
ElectraTherm Green Machine Completes 1,000 Hour Demonstration on Oil Field
Reno NV (SPX) Mar 12, 2012
ElectraTherm has released a comprehensive report on its demonstration project in Laurel, Mississippi to generate renewable energy from hot waste water at an oil field. In 2011, ElectraTherm's Green Machine completed its six-month demonstration to generate additional power from the hot water that oil and gas producers consider a nuisance. This is the first small-scale ( 200kWe) application ... read more


ENERGY TECH
ILS Announces A New Contract For The ILS Proton Launch Of The Mexsat-1 Satellite

Launch Madness at Wallops in March - "Five in Five"

Engineers Tuck NuSTAR in its Nose Cone

Lockheed Martin Selects Alaska's Kodiak Launch Complex To Support Future Athena Launches

ENERGY TECH
Rep. Schiff Applauds Decision to Reject NASA Request to Divert Mars Funds

Winter Studies of 'Amboy' Rock Continue

NASA Mars Orbiter Catches Twister in Action

Working models for the gravitational field of Phobos

ENERGY TECH
Apollo 11: 'A Stark Beauty All Its Own'

Magnetic moon

Twin GRAIL Spacecraft Begin Collecting Lunar Science Data

Apollo 12: Pinpoint Landing on the Ocean of Storms

ENERGY TECH
New Horizons on Approach: 22 AU Down, Just 10 to Go

ENERGY TECH
Stars with Dusty Disks Should Harbor Earth-like Worlds

Star Comb joins quest for Earth-like planets

Researchers say galaxy may swarm with 'nomad planets'

New model provides different take on planetary accretion

ENERGY TECH
What Next for X-37B

XCOR Aerospace Closes $5 Million Round of Investment Capital

XCOR Announces New Lynx Vehicle Payload Integrators

Future of Space Transportation

ENERGY TECH
Three for Tiangong

China hopes to send Long March-5 rocket into space in 2014

Upgraded carrier rocket ready for China's first manned space docking

Long March 7 carrier rocket to lift off in five years

ENERGY TECH
Dear Ups and Dawns

Asteroid 2011 AG5 - A Reality Check

Scientists say big asteroid bears watching


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement