Subscribe free to our newsletters via your
. Space Travel News .




FARM NEWS
Behind closed doors
by Tracey Bryant
Newark DE (SPX) Aug 29, 2012


UD plant scientist Harsh Bais (second from left) is shown with research collaborators, from left, postdoctoral researcher Amutha Sampath Kumar, Jeffrey Caplan, associate director of the Bio-Imaging Center, and postdoctoral researcher Venkatachalam Lakshmanan.

With the help of beneficial bacteria, plants can slam the door when disease pathogens come knocking, University of Delaware researchers have discovered. A scientific team under the leadership of Harsh Bais, assistant professor of plant and soil sciences in UD's College of Agriculture and Natural Resources, found that when pathogens attempt to invade a plant through the tiny open pores in its leaves, a surprising ally comes to the rescue. Soil bacteria at the plant's roots signal the leaf pores to close, thwarting infection.

The fascinating defense response is documented in video and micrographs of live plants taken by confocal and scanning electron microscopes at UD's Bio-Imaging Center at the Delaware Biotechnology Institute.

The research, which explored the interaction between the soil bacterium Bacillus subtilis and the laboratory plant Arabidopsis thaliana, is published in the August issue of The Plant Journal. The findings underscore both the importance of root-based processes in plant defense and the potential for bolstering plant immunity naturally through the emerging field of probiotics.

Postdoctoral researcher Amutha Sampath Kumar is the lead author of the journal article. In addition to Bais, the co-authors include postdoctoral researcher Venkatachalam Lakshmanan, researchers Jeffrey L. Caplan, Deborah Powell and Kirk J. Czymmek of UD's Bio-Imaging Center, and Delphis F. Levia, associate professor of geography. The National Science Foundation, University of Delaware Research Foundation and Delaware Experimental Program to Stimulate Competitive Research (EPSCoR) provided funding for the study.

Millions of stomata, consisting of microscopic pores surrounded by guard cells, cover the above-ground parts of plants, from the stems to the flower petals. The pores resemble tiny mouths, or doors, which the guard cells open and close to allow carbon dioxide, oxygen, water and minerals in and out of the plant.

Pathogens also can slip through these stomata and begin infecting the plant. However, as Bais's team confirmed, this invasion is halted when the beneficial bacterium Bacillus subtilis is present in the soil where the plant is rooted. The finding was based on tests of approximately 3,000 Arabidopsis plants inoculated with the foliar pathogen Pseudomonas syringae pathovar tomato DC3000 (PstDC3000) during a year-long period.

When a foliar pathogen attacks, as shown in previous research by Bais and his group, the plant recruits Bacillus subtilis to help and facilitates its multiplication. The Bacillus subtilis bacteria bind to the plant's roots and invoke abscisic acid and salicylic acid signaling pathways to close the stomata.

Abscisic acid and salicylic acid are both important hormones involved in plant defense. When a plant encounters adverse environmental conditions, such as drought, for example, abscisic acid triggers the stomata to shut tightly to prevent the plant from dehydrating.

In addition to ramping up plant disease resistance, the use of this rhizobacteria to promote drought tolerance in plants could be a very promising avenue, Bais notes.

"Many bacterial pathogens invade plants primarily through stomata on the leaf surface," Bais says. "But how do plants fight off infection? In our studies of the whole plant, we see this active enlistment by Bacillus subtilis, from root to shoot."

Strikingly, the research team's data revealed that of different root-associated soil bacteria tested, only Bacillus species were effective in closing the stomata and for a prolonged period.

"We know only 1 to 5 percent of what this bug Bacillus subtilis can do, but the potential is exciting," Bais notes, pointing out that there is increasing commercial interest in inoculating crop seeds with beneficial bacteria to reduce pathogen infection. "Just as you can boost your immune system, plants also could be supercharged for immunity."

.


Related Links
University of Delaware
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FARM NEWS
Chinese buyer vows to honour French wine heritage
Hong Kong (AFP) Aug 28, 2012
A Chinese businessman who sparked uproar in France when he bought a historic Burgundy vineyard pledged Tuesday to respect local traditions and restore the chateau to its former glory. Louis Ng has been targeted by the far-right National Front and disgruntled winegrowers since paying $10 million for Chateau de Gevrey-Chambertin earlier this year, over fears he will destroy the estate's 900-ye ... read more


FARM NEWS
NASA Administrator Announces New Commercial Crew And Cargo Milestones

Ariane 5s are on the move for Arianespace's upcoming missions

Readying the "boost" for Galileo satellites on Arianespace's next Soyuz mission at the Space

ASTRA 2F touches down in French Guiana for Arianespace's next Ariane 5 dual-passenger mission

FARM NEWS
Curiosity In It for the Long Haul

NASA's Mars rover heads east, driving 'beautifully'

NASA likens Mars rover to Armstrong lunar landmark

Chemcam Laser First Analyzes Yield Beautiful Results

FARM NEWS
Apollo 11 capsule stirs Neil Armstrong memories, tributes

Signing out: Armstrong autographs under hammer

Tributes pour in for 'man on the moon' Armstrong

Neil Armstrong: First man on the moon

FARM NEWS
e2v To Supply Large CMOS Imaging Sensors For Imaging Kuiper Belt Objects

Fly New Horizons through the Kuiper Belt

Hubble Discovers a Fifth Moon Orbiting Pluto

Hubble telescope spots fifth moon near Pluto

FARM NEWS
Search for alien life gets boost at twin star

First Evidence Discovered of Planet's Destruction by Its Star

Exoplanet hosting stars give further insights on planet formation

Five Potential Habitable Exoplanets Now

FARM NEWS
Dream Chaser Team Completes Milestone

Space Launch System Giving Marshall, Langley Wind Tunnels a Workout

Space Launch System Giving Marshall, Langley Wind Tunnels a Workout

Super-heavy carrier rocket could be created jointly with Ukraine, Kazakhstan

FARM NEWS
China eyes next lunar landing as US scales back

China unveils ambitious space projects

Is China Going to Blast Past America in Space?

Hong Kong people share joy of China's manned space program

FARM NEWS
Dawn Engineers Assess Reaction Wheel

Dawn Completes Intensive Phase Of Vesta Exploration

Planetary Resources Announces Agreement with Virgin Galactic for Payload Services

Explained: Near-miss asteroids




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement