Space Travel News  
ENERGY TECH
Battery with a twist
by Staff Writers
Zurich, Switzerland (SPX) Oct 17, 2019

The prototype of the flexible battery.

Today's electronics industry is increasingly focusing on computers or smartphones with screens that can be folded or rolled. Smart clothing items make use of wearable micro-devices or sensors to monitor bodily functions, for example. However, all these devices need an energy source, which is usually a lithium-ion battery. Unfortunately, commercial batteries are typically heavy and rigid, making it fundamentally unsuitable for applications in flexible electronics or textiles.

A remedy for this problem is now being created by Markus Niederberger, Professor for Multifunctional Materials at ETH Zurich, and his team. The researchers have developed a prototype for a flexible thin-film battery that can be bent, stretched and even twisted without interrupting the supply of power.

What makes this new battery special is its electrolyte - that part of the battery through which lithium-ions move when the battery is charged or discharged. This electrolyte was discovered by ETH doctoral student Xi Chen, lead author of the study that recently appeared in the scientific journal Advanced Materials.

Systematically employing bendable components
Following the design of commercial batteries, this new type of battery is built in layers like a sandwich. However, it marks the first time that researchers have used flexible components to keep the whole battery bendable and stretchable. "To date, no one has employed exclusively flexible components as systematically as we have in creating a lithium-ion battery," Niederberger says.

The two current collectors for the anode and the cathode consist of bendable polymer composite that contains electrically conductive carbon and that also serves as the outer shell. On the interior surface of the composite, the researchers applied a thin layer of micronsized silver flakes.

Due to the way the flakes overlap like roof tiles, they don't lose contact with one another when the elastomer is stretched. This guarantees the conductivity of the current collector even if it is subjected to extensive stretching. And in the event that the silver flakes do in fact lose contact with each other, the electrical current can still flow through the carbon-containing composite, albeit more weakly.

With the help of a mask, the researchers then sprayed anode and cathode powder onto a precisely defined area of the silver layer. The cathode is composed of lithium manganese oxide and the anode is a vanadium oxide.

Water-based gel electrolyte
In the final step, the scientists stacked the two current collectors with the applied electrodes on top of each other, separated by a barrier layer similar to a picture frame, while the gap in the frame was filled with the electrolyte gel.

Niederberger emphasises that this gel is environmentally more friendly than the commercial electrolytes: "Liquid electrolyte in today's batteries are flammable and toxic." In contrast, the gel electrolyte that his doctoral student Chen developed contains water with a high concentration of a lithium salt, which not only facilitates the flow of lithium ions between cathode and anode while the battery is charging or discharging, but also keeps the water from electrochemical decomposition.

The scientists joined the various parts of their prototype together with adhesive. "If we want to market the battery commercially, we'll have to find another process that will keep it sealed tight for a longer period of time," Niederberger says.

Numerous potential applications
More and more applications for a battery like this are emerging every day. Well-known manufacturers of mobile phones are vying with each other to produce devices with foldable screens. Other possibilities include rollable displays for computers, smartwatches and tablets, or functional textiles that contain bendable electronics - and all of these require a flexible power supply.

"For instance, you could sew our battery right into the clothing," Niederberger says. What's important is, in the event of battery leakage, to ensure that the liquids that come out cause no damage. This is where the team's electrolyte offers a considerable advantage.

However, Niederberger stresses that more research is necessary to optimise the flexible battery before they consider commercialising it. Above all, the team has to increase the amount of electrode material it can hold. A new doctoral student has recently begun refining the stretchable power supply. The inventor of the initial prototype, Xi Chen, returned to his homeland of China after completing his doctoral thesis to take up a new job - as a consultant for the battery industry.

Research paper


Related Links
ETH Zurich
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Cause of harmful dendrites and whiskers in lithium batteries pinpointed
Richland WA (SPX) Oct 15, 2019
Scientists have uncovered a root cause of the growth of needle-like structures--known as dendrites and whiskers--that plague lithium batteries, sometimes causing a short circuit, failure, or even a fire. The team, led by Chongmin Wang at the Department of Energy's Pacific Northwest National Laboratory, has shown that the presence of certain compounds in the electrolyte--the liquid material that makes a battery's critical chemistry possible--prompts the growth of dendrites and whiskers. The team ho ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
ENERGY TECH
Curiosity findings suggest Mars once featured dozens of shallow briny ponds

NASA's Mars 2020 rover tests descent-stage separation

NASA's Curiosity Rover finds an ancient oasis on Mars

InSight 'hears' peculiar sounds on Mars

ENERGY TECH
Study suggests ice on lunar south pole may have more than one source

NASA seeks industry input on hardware production for lunar spacesuit

Artemis, meet ARTEMIS: Pursuing Sun Science at the Moon

India's 2nd lunar mission orbiter detects charged particles on Moon

ENERGY TECH
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts

ENERGY TECH
Liquifying a rocky exoplanet

Scientists observe formation of individual viruses, a first

Were hot, humid summers the key to life's origins?

A planet that should not exist

ENERGY TECH
NASA and SpaceX hope for manned mission to ISS in early 2020

Sea Launch platform stripped of foreign equipment, ready to leave US for Russia

Jet taking off from Florida will launch NASA weather satellite

SwRI hypersonic research spotlights future flight challenges

ENERGY TECH
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

ENERGY TECH
Scientist helps discover how water is regenerated on asteroids

Draconid meteor shower to light up the skies

Characterizing near-earth objects to understand impact risks, exploration potential

NASA's Webb to unlock the mysteries of comets and the early solar system









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.