Space Travel News  
INTERN DAILY
Bacterial hole puncher could be new broad-spectrum antibiotic
by Staff Writers
Champaign IL (SPX) Oct 30, 2015


A team of researchers developed a new broad-spectrum antibiotic that kills bacteria by punching holes in their membranes. Front row, from left: materials science and engineering professor Jianjun Cheng and postdoctoral researcher Yan Bao. Back row, from left: postdoctoral researcher Menghua Xiong, graduate students Ziyuan Song and Rachael Mansbach, materials science and engineering professor Andrew Ferguson, and biochemistry professor Lin-Feng Chen. Image courtesy L. Brian Stauffer. For a larger version of this image please go here.

Bacteria have many methods of adapting to resist antibiotics, but a new class of spiral polypeptides developed at the University of Illinois targets one thing no bacterium can live without: an outer membrane.

The polypeptides, which are short protein chains, act as bacterial hole-punchers, perforating the bacterial membrane until the cell falls apart. The antimicrobial agents are dressed for their mission in a positively charged shell that lets them travel in body fluids, protected from interacting with other proteins, and also attracts them to bacterial membranes.

Led by U. of I. materials science and engineering professor Jianjun Cheng, the researchers published their findings in the Proceedings of the National Academy of Sciences.

"When you have an infection, it can be very difficult for a doctor to know which bacteria is infecting you," said postdoctoral researcher Menghua Xiong, a co-first author of the paper. "Many antimicrobial agents can only cure one class of bacteria. A doctor may try one class, and if that doesn't work, try another class. We need more broad-spectrum antimicrobial agents."

The new antimicrobial polypeptides are specially designed to fold into a rigid spiral resulting in a rodlike structure, ideal for punching holes in the bacterial membrane.

"We use a very set mechanism to puncture the bacterial membrane," Cheng said, "so the polypeptides don't really care whether the bacteria are gram positive or gram negative. They just kill the bacteria independent of their other surface properties."

Such structures have been investigated for various medical applications, but because they do not like water, they do not travel well in bodily fluids. In addition, other molecules in the cell could interact with the polypeptide to disrupt the spiral structure, making it ineffective in puncturing the membrane.

The Illinois researchers and their collaborators addressed these challenges by attaching positively charged ions to the backbone of the spiral, creating a protective shell around the polypeptide so that it is both water soluble and shielded from cross-reactions.

The shielded spiral structures are inured to changes in temperature or pH, so they have a stability and predictability that similar agents lack, Cheng said. Furthermore, the positive shell has the advantage of targeting bacterial membranes while decreasing interaction with human cells.

"At the molecular level, there are big differences between bacterial and human cells in the membranes," Xiong said. "The cell membrane lipids in bacteria have a lot of negative charges, and this polypeptide is positive, so it interacts with the negatively charged bacterial membrane. But with human cells, the interaction is weaker."

Many drugs are very targeted, interacting with a particular protein or interfering with a particular pathway in the bacterial cell. Bacteria can develop resistance to the antibiotic by circumventing the specific target. Since the spiral structures simply poke holes in the physical structure of the membrane, it would be much harder for bacteria to form resistance, Xiong said. In addition, the new antimicrobial agents could be coupled with other, targeted drugs to enhance their effectiveness.

"The polypeptides punch holes in the membrane, which makes it very easy for other drugs to go through and bypass some of the drug-resistant mechanisms," Cheng said. "Together, they work even better than a single agent. "

Because the proteins have a preset design, Cheng predicts that scaling up production would not present significant challenges. The precursor elements are already manufactured at large scales and available commercially.

Next, the researchers will continue to improve the antimicrobial polypeptides, further decreasing interaction with human cells, and working to more specifically target pathogenic bacteria.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Illinois at Urbana-Champaign
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERN DAILY
Revamped DNA analysis kit gets US nod
San Francisco (AFP) Oct 21, 2015
Two years after personal genetics startup 23andMe was ordered by US authorities to stop selling its DNA test kits, a revamped product has gained market approval, the company said Wednesday. The California-based firm announced the launch of its new "Personal Genome Service," which will test for mutations that could lead to disease. "We've worked with the FDA (Food and Drug Administration) ... read more


INTERN DAILY
Initial launcher assembly is completed for Arianespace's Vega mission with LISA Pathfinder

Ariane 5 is delivered for Arianespace's sixth heavy-lift mission of 2015

ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

INTERN DAILY
NASA Chief: We're Closer to Sending Humans on Mars Than Ever Before

Rewrite of Onboard Memory Planned for NASA Mars Orbiter

Martian skywatchers provide insight on atmosphere, protect orbiting hardware

Landing site recommended for ExoMars 2018

INTERN DAILY
All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

Study reveals origin of organic matter in Apollo lunar samples

Russia touts plan to land a man on the Moon by 2029

INTERN DAILY
The Youngest Crater on Charon

New Horizons on track to pass Kuiper 2014 MU69 within 12000 kms in 2019

A Full View of Pluto's Stunning Crescent

New Horizons Team Reports Success In Second Of Four Targeting Maneuvers

INTERN DAILY
Did Jupiter Expel A Rival Gas Giant

Scientists simulate 3-D exotic clouds on an exoplanet

Spirals in dust around young stars may betray presence of massive planets

The Exoplanet Era

INTERN DAILY
Towers of Steel for New SLS Test Stand Rising at NASA Marshall

Methane-powered engine key to next generation landers

Wall-less Hall thruster may power future deep space missions

NASA SLS Prime Contractor Industry Team Reaches Significant Exploration

INTERN DAILY
China to set up civil satellite systems by 2020

The Last Tiangong

China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

INTERN DAILY
Halloween asteroid gives us a miss, confirms ESA

Dawn Heads Toward Final Orbit

Rosetta finds molecular oxygen on comet 67P

NASA Calls for American Industry Ideas on ARM Spacecraft Development









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.