Space Travel News  
Bacterial Resistance Is Futile Against Wound-Cleaning Laser

The laser used by the researchers emits 'near-infrared' light, which is known to be capable of producing heat. However, as Wilson describes, "Substantial killing of all of the bacteria tested was achieved without causing any temperature rise. The benefit of the laser described in this study is that it produces light that is more able to penetrate deep wounds, increasing the area cleansed".
by Staff Writers
Washington DC (SPX) Jul 07, 2008
A laser-activated antimicrobial offers hope for new treatments of bacterial infections, even those that are resistant to current drugs. Research published in the open access journal BMC Microbiology describes the use of a dye, indocyanine green, which produces bacteria-killing chemicals when lit by a specific kind of laser light.

Michael Wilson led a team from UCL (University College London) who carried out experiments showing that activated indocyanine green is capable of killing a wide range of bacteria including Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa.

The dye is safe for humans. The strength of this new approach lies in the variety of ways in which the chemicals produced by the activated dye harm bacteria. As Wilson explains, this means that resistance is unlikely to develop, "The mechanism of killing is non-specific, with reactive oxygen species causing damage to many bacterial components, so resistance is unlikely to develop - even from repeated use".

Michael Wilson's co-authors on the study include Ghada Omar and Sean Nair of the Division of Microbial Diseases, UCL Eastman Dental Institute.

The increasing occurrence of bacterial resistance is a well-known problem facing modern medicine. The laser-powered treatment described in the study will be useful in the treatment of infections that occur in wounds.

According to Wilson "Infected wounds are responsible for significant morbidity and mortality, and an increase in the duration and the cost of hospital stay. The growing resistance to conventional antibiotics among organisms that infect wounds and burns makes such infections difficult to treat. The technique we are exploring is driven by the need to develop novel strategies to which pathogens will not easily develop resistance."

The laser used by the researchers emits 'near-infrared' light, which is known to be capable of producing heat. However, as Wilson describes, "Substantial killing of all of the bacteria tested was achieved without causing any temperature rise. The benefit of the laser described in this study is that it produces light that is more able to penetrate deep wounds, increasing the area cleansed".

Related Links
BioMed Central
Hospital and Medical News at InternDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Sweat, luck and eureka: Recipes for scientific discovery
Paris (AFP) June 29, 2008
Every week thousands of academic articles heralding discoveries in medicine and science are vetted and validated before being published in no-nonsense journals with names such as "Acta Crystallographica," "Methods in Enzymology," or "Macromolecules".







  • ATK Receives Contract For US Air Force Sounding Rocket Contract
  • SpaceX Conducts Static Test Firing Of Next Falcon 1 Rocket
  • Pratt And Whitney Rocketdyne Contract Option For Solar Thermal Propulsion Rocket Engine
  • NASA, ATK Conduct First Launch Abort System Igniter Test For Orion

  • Inmarsat And ILS Set August 14 For Proton Flight With Inmarsat Satellite
  • Russia Launches Rocket With Military Satellite
  • Payload Integration Complete For Arianespace's Fourth Mission Of 2008
  • Successful Ariane 5 Solid Rocket Booster Test Firing

  • Disaster plan in place for Hubble mission
  • US space shuttle lands safely after installing Japanese lab
  • Space shuttle cleared to land, loose object poses no risk
  • Space shuttle blastoff damaged launch pad: NASA

  • NASA plans two ISS spacewalks next week
  • Shuttle astronauts bid farewell to space station crew
  • Discovery undocks from ISS
  • Shuttle Astronauts Bid Farewell To Space Station Crew

  • Russia seals agreement with private investor for space tourism
  • Analex Awarded Three-Year Option On NASA Expendable Launch Vehicles Integrated Support
  • NASA Goddard Has More Than A Dozen Exciting Missions In Next Year
  • Fly me to the Moon: Japan firm offers weddings in space

  • Shenzhou VII Research Crew Ready To Set Out For Launch Center
  • China's Shot Heard Around The Galaxy
  • A Better Focus On Shenzhou
  • Gallup Poll Shows Americans Unconcerned About China Space Program

  • Eight Teams Taking Up ESA's Lunar Robotics Challenge
  • Three Engineers, Hundreds of Robots, One Warehouse
  • Tartalo The Robot Is Knocking On Your Door
  • Sega, Hasbro unveil new dancing robot

  • Mars Sample Return: The Next Step In Exploring The Red Planet
  • Rain Showers On Mars
  • Phoenix To Bake Ice-Rich Sample Next Week
  • Phoenix Scrapes Almost Perfect Icy Soil For Analysis

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement