. Space Travel News .




.
BLUE SKY
Bacteria forge nitrogen from nitric oxide
by Staff Writers
Munich, Germany (SPX) Oct 18, 2011

An anammox culture in a membrane bioreactor. The red colour is due to the heme c group of the protein cytochrome c that plays an important role in the anammox metabolism. Photo courtesy B. Kartal.

The anaerobic oxidation of ammonia (anammox) is an important pathway in the nitrogen cycle that was only discovered in the 1980s. Currently, scientists estimate that about 50 percent of the nitrogen in the atmosphere is forged by this process.

A group of specialized bacteria perform the anammox reaction, but so far scientists have been in the dark about how these bacteria could convert ammonia to nitrogen in the complete absence of oxygen. Now, 25 years after its discovery, they finally solved the molecular mechanism of anammox.

Anammox bacteria are very unusual because they contain an organelle which is a typical eukaryotic feature. Inside this organelle, known as the "anammoxosome", the bacteria perform the anammox reaction. The membrane of the anammoxosome presumably protects the cells from highly reactive intermediates of the anammox reaction.

These intermediates could be hydrazine and hydroxylamine, as microbiologists proposed many years ago. This was very exciting news because the turnover of hydrazine, a very powerful reductant also used as rocket fuel, had never been shown in biology. However, these early experiments were provisional and many open questions remained.

To finally unravel the pathway experimentally was a very difficult enterprise. Marc Strous from the Max Planck Institute in Bremen says: "The anammox organisms are difficult to cultivate because they divide only once every two weeks.

Therefore we had to develop cultivation approaches suitable for such low growth rates. Even after 20 years of trials, we can still only grow the organisms in bioreactors and not in pure culture."

In the present study, the researchers make use of the latest innovation in bioreactor technology for anammox cultivation: the membrane bioreactor. In such bioreactors the anammox organisms grow as suspended cells rather than in biofilms on surfaces, and relatively few contaminating organisms are present.

The study makes use of protein purification and proteins cannot be effectively purified from biofilms because of the large amount of slime associated with these biofilms.

Another important key to the metabolism was the availability of the genome sequence of one of the best known anammox bacteria, Kuenenia stuttgartiensis.

With the knowledge of the genome, the authors knew which proteins could be important. Based on the genome sequence, they could predict that nitric oxide, not hydroxylamine, might be the precursor for hydrazine.

With a set of state-of-the art molecular methods the scientists could thus completely unravel the anammox pathway, and unequivocally establish the role of hydrazine and nitric oxide (NO) as intermediates.

"With this significant advance we can finally understand how the nitrogen in the air we breathe is created: from rocket fuel and nitric oxide!" concludes Marc Strous. With the establishment of the prominent role of nitric oxide in both anammox and denitrification, the research also opens a new window on the evolution of the biological nitrogen cycle in the Earth's distant past.

Marc Strous explains: "In the early days in Earth's history, the nitric oxide accumulated in the atmosphere by vulcanic activity, was presumably the first "deep electron sink" on earth and may so have enabled the evolution of both microbial metabolic pathways anammox and denitrification."

Related Links
-
The Air We Breathe at TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



BLUE SKY
From myth to reality: Photos prove triple rainbows exist
Washington DC (SPX) Oct 11, 2011
Few people have ever claimed to see three rainbows arcing through the sky at once. In fact, scientific reports of these phenomena, called tertiary rainbows, were so rare - only five in 250 years - that until now many scientists believed sightings were as fanciful as Leprechaun's gold at a rainbow's end. These legendary optical rarities, caused by three reflections of each light ray within ... read more


BLUE SKY
ILS Proton Launches ViaSat-1 for ViaSat

Final checks for first Soyuz launch from Kourou

Soyuz is put through its paces for Thursday's launch

Europe delays maiden launch of Soyuz with sat-nav payload

BLUE SKY
Mars Landing-Site Specialist

UK Space Agency announces seed funding for Mars exploration

New Mystery on Mars's Forgotten Plains

Russian scientists want to join Europe's ExoMars mission

BLUE SKY
Lunar Probe to search for water on Moon

Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

BLUE SKY
Dwarf planet may not be bigger than Pluto

Series of bumps sent Uranus into its sideways spin

Mission to Mysterious Uranus

Spinning hourglass object may be the first of many to be discovered in the Kuiper belt

BLUE SKY
NASA's Spitzer Detects Comet Storm In Nearby Solar System

Photo Reveals Planet-Size Object as Cool as Earth

Spiral Arms Point to Possible Planets in a Star's Dusty Disk

UChicago launches search for distant worlds

BLUE SKY
Caltech Event Marks 75th Anniversary of JPL Rocket Tests

Russia puts new Rus-M carrier rocket project on hold

Russia to abandon rocket booster work

Pee power: Urine-loving bug churns out space fuel

BLUE SKY
China's first space lab module in good condition

Takeoff For Tiangong

Snafu as China space launch set to US patriotic song

Civilians given chance to reach for the stars

BLUE SKY
Formation of Scheila's Triple Dust Tails Explained

NASA's Dawn Science Team Presents Early Science Results

Amateur skywatchers help space hazards team

New View of Vesta Mountain From NASA's Dawn Mission


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement