Space Travel News  
BIO FUEL
Bacteria could become a future source of electricity
by Staff Writers
Lund, Sweden (SPX) Mar 28, 2019

Understanding how bacteria function and communicate is valuable in many contexts. For example, bacteria and other micro-organisms can be used to produce biofuel, in what is known as microbial biofuel cells.

In recent years, researchers have tried to capture the electrical current that bacteria generate through their own metabolism. So far, however, the transfer of the current from the bacteria to a receiving electrode has not been efficient at all. Now, researchers from institutions including Lund University have achieved a slightly more efficient transfer of electrical current.

One of society's greatest challenges is to meet the need for renewable and sustainable energy. Interest is growing around one potential such energy source: bacteria.

"We pick up electrons from the bacterium and transfer them to an electrode. This enables us to obtain an electrical current from the bacteria in real time, while they are eating, as it were", explains Lo Gorton, professor of chemistry at Lund University in Sweden.

"This study is a breakthrough in our understanding of extracellular electron transfer in bacteria", he says.

Extracellular electron transfer refers to the current that bacteria can generate outside their own cell. The difficulty when extracting the energy is to produce a molecule that can get through the bacterium's thick cell wall to retrieve the electrons there more efficiently.

In the current study, the researchers created an artificial molecule for this purpose, known as a redox polymer. The type of bacteria studied is a common intestinal bacterium present in both animals and humans, Enterococcus faecalis.

The results of the study are valuable not only for their potential with regard to future bacterial electrical energy; they also increase our understanding of how bacteria communicate with their surroundings. The bacteria themselves probably use extracellular electron transfer to communicate, both with other bacteria and with molecules.

"Electron transfer could be of great significance for how the bacteria communicate with various molecules and with each other in our digestive system, but also for how nature functions in a broader perspective. It is thought today that many geological processes are bacteria-driven", says Lo Gorton.

Understanding how bacteria function and communicate is valuable in many contexts. For example, bacteria and other micro-organisms can be used to produce biofuel, in what is known as microbial biofuel cells.

Of particular interest in an energy context are the photosynthesising bacteria. If they are attached to an electrode, they can generate electric energy when exposed to light. This has been shown by Lo Gorton and his colleagues in previous studies.

Deeper knowledge about bacteria is also significant in terms of potentially using them to purify wastewater, to produce molecules that are difficult to synthesise or to reduce carbon dioxide into a more usable form, for example.

Research paper


Related Links
Lund University
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
UMD-Led researchers' wood-based technology creates electricity from heat
College Park MD (SPX) Mar 27, 2019
A University of Maryland-led team of researchers has created a heat-to-electricity device that runs on ions and which could someday harness the body's heat to provide energy. Led by UMD researchers Liangbing Hu, Robert Briber and Tian Li of the department of materials science, and Siddhartha Das of mechanical engineering, the team transformed a piece of wood into a flexible membrane that generates energy from the same type of electric current (ions) that the human body runs on. This energy i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
BIO FUEL
Laser blasts show asteroid bombardment, hydrogen make great recipe for life on Mars

Google and Haughton-Mars Project Partner on Moon-Mars Exploration Prep

ExoMars landing platform arrives in Europe with a name

NASA's Mars 2020 rover is put to the test

BIO FUEL
US wants astronauts back on Moon within five years: Pence

Returning Astronauts to the Moon: Lockheed Martin Finalizes Full-Scale Cislunar Habitat Prototype

Floating ideas for an airlock near the Moon

Goddard prepares for a new era of human exploration

BIO FUEL
Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt

Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare

BIO FUEL
Icy giant planets in the laboratory

Neural Networks Predict Planet Mass

Astrobiology seminar aims to inspire a look into the bounds of life

Carbon monoxide detectors could warn of extraterrestrial life

BIO FUEL
SLS engine section approaches finish line for first flight

Arianespace orbits 600th satellite, the PRISMA EO satellite for Italy

Rocket Crafters pivots with new patents for 3D-printed fuel

Ariane 6 maiden flight will deploy satellites for OneWeb, additional launches booked

BIO FUEL
Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

BIO FUEL
NASA instruments image fireball over Bering Sea

OSIRIS-REx spacecraft studies asteroid Bennu up close

NASA Mission Reveals Asteroid Has Big Surprises

Hayabusa2 probes asteroid for secrets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.