Space Travel News  
Baby Jupiters Must Gain Weight Fast

This photograph from NASA's Spitzer Space Telescope shows the young star cluster NGC 2362. By studying it, astronomers found that gas giant planet formation happens very rapidly and efficiently, within less than 5 million years, meaning that Jupiter-like worlds experience a growth spurt in their infancy. Credit: NASA/JPL-Caltech/T. Currie (CfA)
by Staff Writers
Boston MA (SPX) Jan 13, 2009
The planet Jupiter gained weight in a hurry during its infancy. It had to, since the material from which it formed probably disappeared in just a few million years, according to a new study of planet formation around young stars.

Smithsonian astronomers examined the 5 million-year-old star cluster NGC 2362 with NASA's Spitzer Space Telescope, which can detect the signatures of actively forming planets in infrared light. They found that all stars with the mass of the Sun or greater have lost their protoplanetary (planet-forming) disks.

Only a few stars less massive than the Sun retain their protoplanetary disks. These disks provide the raw material for forming gas giants like Jupiter. Therefore, gas giants have to form in less than 5 million years or they probably won't form at all.

"Even though astronomers have detected hundreds of Jupiter-mass planets around other stars, our results suggest that such planets must form extremely fast. Whatever process is responsible for forming Jupiters has to be incredibly efficient," said lead researcher Thayne Currie of the Harvard-Smithsonian Center for Astrophysics. Currie presented the team's findings at a meeting of the American Astronomical Society in Long Beach, Calif.

Even though nearly all gas giant-forming disks in NGC 2362 have disappeared, several stars in the cluster have "debris disks," which indicates that smaller rocky or icy bodies such as Earth, Mars, or Pluto may still be forming.

"The Earth got going sooner, but Jupiter finished first, thanks to a big growth spurt," explained co-author Scott Kenyon.

Kenyon added that while Earth took about 20 to 30 million years to reach its final mass, Jupiter was fully grown in only 2 to 3 million years.

Previous studies indicated that protoplanetary disks disappear within 10 million years. The new findings put even tighter constraints on the time available to create gas giant planets around stars of various masses.

Related Links
Harvard-Smithsonian Center for Astrophysics
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Sagittarius offers planet clues
Rochester, N.Y. (UPI) Jan 6, 2009
U.S. astronomers say planets may be able to form around certain types of binary star systems.







  • NASA Seeks Concept Proposals For Ares V Heavy Lift Rocket
  • ISRO Develops Rocket For Heavy Satellite Launches
  • Flight Acceptance Hot Test Of Indigenous Cryogenic Engine Successful
  • Report: Atlas, Delta rockets to save money

  • Hot Bird 10 Delivered For Multi-Payload Ariane 5 February Liftoff
  • ISRO To Launch Four Foreign Satellites This Year
  • Ariancespace Celebrates Year Of Successes
  • Arianespace To Launch Egyptian Satellite Nilesat 201

  • Sharks Fly With Shuttle On Return Trip
  • NASA describes final moments of Columbia tragedy
  • NASA gives crew safety tips after detailing Columbia tragedy
  • NASA seeks space shuttle display ideas

  • Kogod Students Pioneer Branding Potential Of International Space Station
  • Spacehab To Support Pre-Launch Preparations For Russian Module
  • Russia Tests Phone Home To Santa Network
  • ISS Astronauts Successfully Complete Spacewalk

  • A Testing Future Of Exploration And More For NASA In 2009
  • NASA finds clues to Mars mysteries
  • US gives green light for first commercial spaceport
  • China's First Multi-Functional Experiment System For Space Tribology

  • Shenzhou-7 Monitor Satellite Finishes Mission After 100 Days In Space
  • China Launches Third Fengyun-2 Series Weather Satellite
  • China To Launch New Remote Sensing Satellite
  • HK, Macao Scientists Expected To Participate In China's Aerospace Project

  • Japan researchers unveil robot suit for farmers
  • Will GI Roboman Replace GI Joe
  • Marshall Sponsors Four Student Teams In FIRST Robotics Competitions
  • Jump Like A Grasshopper

  • Martian Rock Arrangement Not Alien Handiwork
  • A Change Of Seasons On Mars
  • Human Spaceflight To Mars Proposed Using Combination Of Space Shuttles
  • Study: Pebbles can move against wind

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement