Space Travel News  
STELLAR CHEMISTRY
Asymmetric sound absorption lets in the light
by Staff Writers
Washington DC (SPX) Oct 09, 2017


These are multiband asymmetric absorptions. (a) and (b) show the photograph of structures for achieving two-band and four-band asymmetric absorptions, respectively. Credit: Long, Cheng and Liu

If you've ever lived in an apartment building or stayed in a hotel room, you are probably familiar with the inconvenience of inadequate sound absorption. Acoustic absorption refers to the absorption of sound energy by a material. Whether it's to improve acoustics or to prevent noisy neighbors, sound absorption has multiple applications in engineering and architecture, which can be improved by asymmetric acoustics.

Many asymmetric absorbers, those that only absorb sound coming in from one direction, are currently based on a single-port system, where sound enters one side and is absorbed before a rigid wall.

In this design, however, light and air are unable to pass through the system. But a combined research effort from Nanjing University and the Chinese Academy of Sciences shows that asymmetric absorption can be realized within a straight transparent waveguide. The waveguide allows light transmission and air flow through the absorber and is described this week in Applied Physics Letters, from AIP Publishing.

Ying Cheng, associate professor of physics at Nanjing University, and his colleagues developed a methodology to induce non-reciprocal absorption and reflectance for both multiband and broadband sound. They discovered that sound was almost completely absorbed, more than 96 percent, when using the multiband absorber in an asymmetric Helmholtz resonance (HR) fashion.

"Therefore, we were curious about whether there are artificial structures with the effect of 'blocking' sound waves which act as the rigid wall, but [are] transparent to light and wind," Cheng said.

Within a tube with both ends open they constructed an asymmetric sound absorber. "[T]he system can almost totally absorb the sound energy impinging on one port, but largely reflects the sound energy entering the other port," he said.

"In the system, one of [the] Helmholtz resonators (located on branches to the main tube and acting as shunts) functions as an artificial soft wall which can block sound waves as if they were a rigid solid wall."

Asymmetric absorbers use a more complicated method of absorption than, say, porous metameterials that absorb from both directions. Often, nonlinear effects or highly complex structures are required to break reciprocity and allow reflection from one direction.

Here, however, the clever design of the shunted HR pairs takes advantage of natural loss mechanisms to achieve the effect. These systems could find a number of applications in architectural design, specifically in the design of acoustically isolated rooms where light and air flow is still desired.

"The researchers may [have] found an almost 100 percent absorption of the noise from outside of a room for acoustic isolation as well as high reflection of the sound waves inside the room to enhance the reverberation. And most importantly, the design allows free interchange of air between the outside and the room, which they were unable to do in previous prototypes [with only one end of the tube being open]," Cheng said.

Using the newly developed model, "we may extend asymmetric sound absorption into a two-dimensional planar system by using other types of acoustic resonators to make the asymmetric absorption more widely used," said Cheng.

The article, "Asymmetric absorber with multiband and broadband for low-frequency sound," is authored by Houyou Long, Ying Cheng and Xiaojun Liu. The article appeared in Applied Physics Letters Oct. 3, 2017 (DOI: 10.1063/1.4998516)

STELLAR CHEMISTRY
Researchers demonstrate quantum teleportation of patterns of light
Johannesburg, South Africa (SPX) Sep 25, 2017
Quantum communication over long distances is integral to information security and has been demonstrated in free space and fibre with two-dimensional states, recently over distances exceeding 1200 km between satellites. But using only two states reduces the information capacity of the photons, so the link is secure but slow. To make it secure and fast requires a higher-dimensional alphabet, ... read more

Related Links
American Institute of Physics
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Lockheed Martin unveils reusable water-powered Mars lander

SpaceX's Musk unveils plan to reach Mars by 2022

Research sheds new light on how Earth and Mars were created

The Mars 2020 Rover features new spectral abilities with its new SuperCam

STELLAR CHEMISTRY
Chinese moon missions delayed by rocket failure: report

Moon village the first stop to Mars: ESA

Russian space agency, NASA agree to co-build lunar-orbit space station

NASA, Roscosmos Sign Joint Statement on Researching, Exploring Deep Space

STELLAR CHEMISTRY
Solving the Mystery of Pluto's Giant Blades of Ice

Global Aerospace Corporation to present Pluto lander concept to NASA

Pluto features given first official names

Hibernation Over, New Horizons Continues Kuiper Belt Cruise

STELLAR CHEMISTRY
Glenn Tests Thruster Bound for Metal World

Searching for Distant Worlds With a Flying Telescope

Scientists propose new concept of terrestrial planet formation

The return of the comet-like exoplanet

STELLAR CHEMISTRY
Arianespace to launch COSMO-SkyMed satellites manufactured by Thales

Arianespace signs contract for 10 Vega and Vega C launchers

Launch Vehicle and Missile Ascent Trajectories

Ariane 5 rocket puts satellites into orbit on second attempt

STELLAR CHEMISTRY
Mars probe to carry 13 types of payload on 2020 mission

China's cargo spacecraft separates from Tiangong-2 space lab

Work on China's mission to Mars 'well underway'

Chinese company eyes development of reusable launch vehicle

STELLAR CHEMISTRY
Studies of 'Crater Capital' in the Baltics Show Impactful History

Unexpected Surprise: A Final Image from Rosetta

Hubble Observes the Farthest Active Inbound Comet Yet Seen

NASA's Near-Earth Asteroid CubeSat Goes Full Sail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.