Space Travel News  
STELLAR CHEMISTRY
Astrophysicists Observe Long-Theorized Quantum Phenomena
by Staff Writers
Baltimore MD (SPX) Aug 03, 2020

Planetary nebula NGC 2440's central star, HD62166, is possibly the hottest known white dwarf star discovered yet. White dwarfs exhibit puzzling quantum phenomena: As they gain mass, they shrink in size.

At the heart of every white dwarf star - the dense stellar object that remains after a star has burned away its fuel reserve of gases as it nears the end of its life cycle - lies a quantum conundrum: as white dwarfs add mass, they shrink in size, until they become so small and tightly compacted that they cannot sustain themselves, collapsing into a neutron star.

This puzzling relationship between a white dwarf's mass and size - called the mass-radius relation - was first theorized by Nobel Prize-winning astrophysicist Subrahmanyan Chandrasekhar in the 1930s. Now, a team of Johns Hopkins astrophysicists has developed a method to observe the phenomenon itself using astronomical data collected by the Sloan Digital Sky Survey and a recent dataset released by the Gaia Space Observatory. The combined datasets provided more than 3,000 white dwarfs for the team to study.

A report of their findings, led by Hopkins senior Vedant Chandra, is now in press in the Astrophysical Journal and available online on arXiv.

"The mass-radius relation is a spectacular combination of quantum mechanics and gravity, but it's counterintuitive for us - we think that as an object gains mass, it should get bigger," says Nadia Zakamska, an associate professor in the Department of Physics and Astronomy who supervised the student researchers.

"The theory has existed for a long time, but what's notable is that the dataset we used is of unprecedented size and unprecedented accuracy. These measurement methods, which in some cases were developed years ago, all of a sudden work so much better and these old theories can finally be probed."

The team obtained their results using a combination of measurements, including primarily the gravitational redshift effect, which is the change of wavelengths of light from blue to red as light moves away from an object. It is a direct result of Einstein's general theory of relativity.

"To me, the beauty of this work is that we all learn these theories about how light will be affected by gravity in school and in textbooks, but now we actually see that relationship in the stars themselves," says fifth-year graduate student Hsiang-Chih Hwang, who proposed the study and first recognized the gravitational redshift effect in the data.

The team also had to account for how a star's movement through space might affect the perception of its gravitational redshift. Similar to how a fire engine siren changes pitch according to its movement in relation to the person listening, light frequencies also change depending on movement of the light-emitting object in relation to the observer. This is called the Doppler effect, and is essentially a distracting "noise" that complicates the measurement of the gravitational redshift effect, says study contributor Sihao Cheng, a fourth-year graduate student.

To account for the variations caused by the Doppler effect, the team classified white dwarfs in their sample set by radius. They then averaged the redshifts of stars of a similar size, effectively determining that no matter where a star itself is located or where it's moving in relation to Earth, it can be expected to have an intrinsic gravitational redshift of a certain value.

Think of it as taking an average measurement of all the pitches of all fire engines moving around in a given area at a given time - you can expect that any fire engine, no matter which direction it's moving, will have an intrinsic pitch of that average value.

These intrinsic gravitational redshift values can be used to study stars that are observed in future datasets. The researchers say that upcoming datasets that are larger and more accurate will allow for further fine-tuning of their measurements, and that this data may contribute to the future analysis of white dwarf chemical composition.

They also say their study represents an exciting advance from theory to observed phenomena.

"Because the star gets smaller as it gets more massive, the gravitational redshift effect also grows with mass," Zakamska says. "And this is a bit easier to comprehend - it's easier to get out of a less dense, bigger object than it is to get out of a more massive, more compact object. And that's exactly what we saw in the data."

The team is even finding captive audiences for their research at home - where they've conducted their work amid the coronavirus pandemic.

"The way I extolled it to my granddad is, you're basically seeing quantum mechanics and Einstein's theory of general relativity coming together to produce this result," Chandra says. "He was very excited when I put it that way."

Research Report: "A Gravitational Redshift Measurement of the White Dwarf Mass-Radius Relation"


Related Links
Johns Hopkins University
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Beyond the Brim, Sombrero galaxy's halo suggests turbulent past
Baltimore MD (SPX) Feb 21, 2020
Surprising new data from NASA's Hubble Space Telescope suggests the smooth, settled "brim" of the Sombrero galaxy's disk may be concealing a turbulent past. Hubble's sharpness and sensitivity resolves tens of thousands of individual stars in the Sombrero's vast, extended halo, the region beyond a galaxy's central portion, typically made of older stars. These latest observations of the Sombrero are turning conventional theory on its head, showing only a tiny fraction of older, metal-poor stars in t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Radiation-Devouring Mold Could Be Humanity's Key to Venturing to Mars, New Research Says

A European dream team for Mars

Ice sheets, not rivers, carved valleys on Mars, new study says

NASA's Perseverance rover bound for Mars to seek ancient life

STELLAR CHEMISTRY
Russian Cosmonauts Could Be Going to the Moon Without a Super-Heavy Launch Vehicle

Study reveals composition of gel-like lunar substance

Aerojet Rocketdyne completes its propulsion for NASA's Artemis II mission

Russia's Trailblazing Lunar Lander Mission to be Launch-Tested With US Equipment

STELLAR CHEMISTRY
NASA's Webb Telescope Will Study Jupiter, Its Rings, and Two Intriguing Moons

NASA Juno takes first images of Ganymede's North Pole

Subaru Telescope and New Horizons explore the outer Solar System

The collective power of the solar system's dark, icy bodies

STELLAR CHEMISTRY
Surprising number of exoplanets could host life

As if space wasn't dangerous enough

Scientists revive microbes from 100 million years ago

Exoplanet rediscovery is step toward finding habitable planets

STELLAR CHEMISTRY
Astronauts praise 'flawless' SpaceX capsule landing

Key Connection for Artemis I Arrives at Kennedy

SpaceX brings NASA astronauts home safe in milestone mission

South Korea given green light for solid-propellant rockets

STELLAR CHEMISTRY
China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

STELLAR CHEMISTRY
Scientists Find Two Meteorites in Two Weeks

New technique enables mineral ID of precious Antarctic micrometeorites

How stony-iron meteorites form

An origin story for a family of oddball meteorites









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.