Subscribe free to our newsletters via your
. Space Travel News .




TECH SPACE
Armored caterpillar could inspire new body armor
by Staff Writers
Riverside, CA (SPX) Jun 12, 2012


File image: mantis shrimp.

Military body armor and vehicle and aircraft frames could be transformed by incorporating the unique structure of the club-like arm of a crustacean that looks like an armored caterpillar, according to findings by a team of researchers at the University of California, Riverside's Bourns College of Engineering and elsewhere published online in the journal Science.

The bright orange fist-like club of the mantis shrimp, or stomatopod, a 4-inch long crustacean found in tropical waters, accelerates underwater faster than a 22-caliber bullet. Repeated blows can destroy mollusk shells and crab exoskeletons, both of which have been studied for decades for their impact-resistant qualities.

The power of the mantis shrimp is exciting, but David Kisailus, an assistant professor at the Bourns College of Engineering, and his collaborators, were interested in what enabled the club to withstand 50,000 high-velocity strikes on prey during its lifespan. Essentially, how does something withstand 50,000 bullet impacts?

They found that the club is a highly complex structure, comprised of three specialized regions that work together to create a structure tougher than many engineered ceramics.

The first region, located at the impacting surface of the club, contains a high concentration of mineral, similar to that found in human bone, which supports the impact when the mantis shrimp strikes prey.

Further inside, highly organized and rotated layers of chitin (a complex sugar) fibers dispersed in mineral act as a shock absorber, absorbing energy as stress waves pass through the club. Finally, the club is encapsulated on its sides by oriented chitin fibers, which wrap around the club, keeping it intact during these high velocity impacts.

"This club is stiff, yet it's light-weight and tough, making it incredibly impact tolerant and interestingly, shock resistant," Kisailus said. "That's the holy grail for materials engineers."

Kisailus said the potential applications in structural materials are widespread because the final product could be lighter weight and more impact resistant than existing products.

For example, with electric cars less weight will reduce power consumption and increase driving range. With airplanes, less weight would reduce fuel costs and better impact resistance would improve reliability and cut repair bills.

But Kisailus is primarily focused on improving military body armor, which can add 30 pounds to a service member's load. His goal is to develop a material that is one-third the weight and thickness of existing body armor.

Kisailus and James C. Weaver, who worked with Kisailus as a post-doctoral scholar and is now at Harvard University, began work on the mantis shrimp when Kisailus arrived at UC Riverside in 2007. They were later joined at UC Riverside by Garrett W. Milliron, a Ph.D. student, and Steven Herrera, an undergraduate student.

Kisailus, who studies the structures of marine animals for inspiration to develop new materials, has also worked with snails such as the abalone and chiton, as well as sea urchin.

Those animals were all studied for their defensive prowess, in other words their exterior protection from predators. The club of the mantis shrimp interested Kisailus because it's an offensive tool.

"We have been studying these other organisms when we should have been studying this guy because he literally eats them for breakfast," Kisailus said.

The force created by the mantis shrimp's impact is more than 1,000 times its own weight. It's so powerful that Kisailus needs to keep it in a special aquarium in his lab so it doesn't break the glass.

Also, the acceleration of the club creates cavitation, meaning it shears the water, literally boiling it, forming cavitation bubbles that implode, yielding a secondary impact on the mantis shrimp's prey.

Kisailus and Pablo Zavattieri, of Purdue University, one of the co-authors of Science paper, just received additional $590,000 in funding from the Air Force Office of Scientific Research to continue work on the stomatopod. They want to further understand the structure of club and continue work designing materials inspired by that structure.

Since this project was multidisciplinary, Kisailus and his UC Riverside team continued working with Weaver after he moved on to Harvard University, and others including Ali Miserez, Nanyang Technical University in Singapore; Kenneth Evans-Lutterodt and Elaine DiMasi, Brookhaven National Laboratory in Upton, NY; and Brook Swanson, Gonzaga University.

"The team we put together was excellent: having experts in zoology, mechanics, modeling and synchrotron x-ray characterization gave us multiple views of the same problem, making it a very thorough investigation," Kisailus said.

.


Related Links
University of California - Riverside
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
A new spin on antifreeze
Boston MA (SPX) Jun 12, 2012
A team of researchers from Harvard University have invented a way to keep any metal surface free of ice and frost. The treated surfaces quickly shed even tiny, incipient condensation droplets or frost simply through gravity. The technology prevents ice sheets from developing on surfaces-and any ice that does form, slides off effortlessly. The discovery, published online as a just-accepted- ... read more


TECH SPACE
NuSTAR Arrives at Island Launch Site

Another Ariane 5 begins its initial build-up at the Spaceport

Boeing Receives DARPA Airborne Satellite Launch Study Contract

Sea Launch Delivers the Intelsat 19 Spacecraft into Orbit

TECH SPACE
Impact atlas catalogs over 635,000 Martian craters

e2v imaging sensors launched into space on NASA mission to Mars

NASA Mars Rover Team Aims for Landing Closer to Prime Science Site

NASA's Mars rover zeroes in on August landing

TECH SPACE
UA Lunar-Mining Team Wins National Contest

NASA Lunar Spacecraft Complete Prime Mission Ahead of Schedule

NASA Offers Guidelines To Protect Historic Sites On The Moon

Neil Armstrong gives rare interview - to accountant

TECH SPACE
It's a Sim: Out in Deep Space, New Horizons Practices the 2015 Pluto Encounter

Beyond Pluto And Exploring the Kuiper Belt

Uranus auroras glimpsed from Earth

Herschel images extrasolar analogue of the Kuiper Belt

TECH SPACE
Tiny Planet-Finding Mirrors Borrow from Webb Telescope Playbook

Astronomers Probe 'Evaporating' Planet Around Nearby Star with Hobby-Eberly Telescope

Venus transit may boost hunt for other worlds

NSO To Use Venus Transit To Fine-Tune Search For Other Worlds

TECH SPACE
NASA Surpasses Test Facility Record With Long-Duration J-2X Powerpack Test

NASA Begins Development of Space Launch System Flight Software

Dream Chaser Flight Vehicle Scales Rocky Mountain Summits

Boeing Delivers First Space Launch System Hardware to NASA

TECH SPACE
Shenzhou 9 crews named in Chinese media

Life Supplies and Manned Docking Tested in Shenzhou-9 Mission

Two Women For Tiangong

Shenzhou 9 Ready For Manned Mission To Tiangong-1

TECH SPACE
Dawn Mission Video Shows Vesta's Coat of Many Colors

Dawn deep in the asteroid belt orbiting Vesta

UT's Josh Emery Uncovers Clues About Asteroid That Will Pass Near Earth

Rosetta flyby uncovers the complex history of asteroid Lutetia




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement