Subscribe free to our newsletters via your
. Space Travel News .




EARLY EARTH
Ancient plant-fungal partnerships reveal how the world became green
by Staff Writers
Sheffield UK (SPX) May 16, 2012


A fern was chosen to represent the earliest plants to have both roots and leaves.

Prehistoric plants grown in state-of-the-art growth chambers recreating environmental conditions from more than 400 million years ago have shown scientists from the University of Sheffield how soil dwelling fungi played a crucial role in the evolution of plants.

This ground breaking work provides fundamental knowledge of how plants colonised the land before roots evolved and the co-evolution of one of the most ancient relationships, between fungi and early plants that played a founding role in the evolution of Earth's ecosystems.

The research highlights the importance of mutually beneficial plant-fungal relationships prior to the evolution of roots, whereby plants gain growth-promoting soil phosphorus from the fungi in exchange for sugars fixed by the plant through photosynthesis.

The study compared the efficiencies of plant-fungal relationships in land plant species spanning more than 400 million years of evolution under both modern day atmospheric conditions and CO2 concentrations on Earth at the time plants first emerged onto the land.

Lead author Dr Katie Field, of the University's Department of Animal and Plant Sciences, said: "Our research shows for the first time how Earth's terrestrial ecosystems were initiated in partnership with soil dwelling fungi nearly half a billion years ago and how these fungi played a crucial role in enabling plants to diversify into fantastically rich and biodiverse modern floras.

"The earliest land plants not only faced ever increasing competition for light with the evolution of new, taller species of plants, but also experienced reduced fungal symbiotic efficiency and subsequently lower total capture of phosphorus as global atmospheric carbon dioxide levels fell.

"In contrast, the fungal symbiotic efficiency of the more sophisticated, recently evolved land plants with complex organs such as leaves and roots, increased as CO2 levels decreased. This would have given them a significant evolutionary advantage and has led to their dominance of world ecosystems today."

Dr Martin Bidartondo, of the Department of Life Sciences at Imperial College London, an expert in the ecology and evolution of mycorrhizas, one of the most widespread symbioses on Earth, was responsible for the molecular work carried out as part of the research.

Dr Bidartondo added: "We are finally starting to get information on which fungi allowed the colonisation of land by plants and about how they did it. This is because we can now discover which fungal lineages form intimate associations with the oldest groups of plants by using new molecular ecology and evolution approaches".

The scientists used liverworts as representatives of the earliest group of plants to leave the water. These plants have no roots or leaves, do not produce flowers or seeds, and are structurally very similar to fossilised remains of the very first land plants.

A fern was chosen to represent the earliest plants to have both roots and leaves. Finally, a common garden weed - Ribwort Plantain - was chosen as a typical example of the most recently evolved group of plants.

Dr Field said: "Our exciting findings clearly indicate that the co-evolution of complex plant rooting systems and fungal symbioses, against a background of falling atmospheric carbon dioxide, resulted in increased symbiotic efficiency and as such, ensured the success of plants in 'greening the Earth' and their ensuing diversification, creating the wonderfully varied terrestrial ecosystems that we are familiar with today."

.


Related Links
University of Sheffield
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Amber preserves earliest pollination clue
Grenoble, France (UPI) May 15, 2012
Amber from 100-million-year-old deposits in Northern Spain has preserved and revealed the first ever record of insect pollination, scientists say. Specimens of tiny insects covered with pollen grains in two pieces of Cretaceous era amber are the first record of pollen transport and social behavior in this group of animals, researchers said. The amber featured inclusions of thysan ... read more


EARLY EARTH
SpaceX poised for high-stakes space station launch

Ariane rocket launches two Asian satellites

Key facts about SpaceX

Refurbishment on Grand Scale for Iconic VAB

EARLY EARTH
Opportunity Rolling Again After Fifth Mars Winter

Mojave Desert Tests Prepare for NASA Mars Roving

Mars Opportunity Rover Is A Go For More Travel

WSU air-quality researcher to lead field studies in support of NASA Mars mission

EARLY EARTH
Perigee "Super Moon" On May 5-6

India's second moon mission Chandrayaan-2 to wait

European Google Lunar X Prize Teams Call For Science Payloads

Russia to Send Manned Mission to Moon by 2030

EARLY EARTH
Beyond Pluto And Exploring the Kuiper Belt

Uranus auroras glimpsed from Earth

Herschel images extrasolar analogue of the Kuiper Belt

New Horizons on Approach: 22 AU Down, Just 10 to Go

EARLY EARTH
Cosmic dust rings no guarantee of planets

In search of new 'Earths' beyond our Solar System

Free-floating planets in the Milky Way outnumber stars by factors of thousands

Unseen planet revealed by its gravity

EARLY EARTH
Marshall Completes Wind Tunnel Testing For Dream Chaser Space System

NASA Continues J-2X Powerpack Testing

India conducting new round of cryogenic engine testing

Aerojet's AJ26 Flight Engine Successfully Hot-Fire Tested for Orbital's Antares Rocket

EARLY EARTH
China confirms plans to build own orbital station

Building a Heavenly Palace in outer space

Long March-2F rocket delivered to launch center

China's Lunar Docking

EARLY EARTH
NASA trains astronauts to land on asteroid

Amateur astronomers boost ESA's asteroid hunt

Dawn reveals complexities of ancient asteroidal world

NASA Dawn Mission Reveals Secrets of Large Asteroid




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement