. Space Travel News .




.
EARLY EARTH
Adjustable valves gave ancient plants the edge
by Staff Writers
Bristol, UK (SPX) Jun 13, 2011

File image: stomata.

Controlling water loss is an important ability for modern land plants as it helps them thrive in changing environments. New research from the University of Bristol, published in the journal Current Biology, shows that water conserving innovations occurred very early in plants' evolutionary history.

The research focused on the role of stomata, microscopic pores in the surface of leaves that allow carbon dioxide gas to be taken up for use in photosynthesis, while at the same time allowing water to escape. Instead of being fixed pores in the leaf, rather like a sieve, the stomata of modern plants are more like valves that open and close on demand.

They do this in response to environmental and chemical signals, such as light and carbon dioxide, therefore balancing the photosynthetic and water requirements of the plant. Therefore, a key evolutionary question is: when did plants develop these 'active' mechanisms of stomatal control?

Elizabeth Ruszala, a Gatsby Charitable Foundation-funded PhD student working in Professor Alistair Hetherington's research group in the School of Biological Sciences, studied the stomata of Selaginella uncinata, a member of a primitive group of plants called spikemosses, which first appeared approximately 400 million years ago.

Significantly, not only were the stomata of this ancient group of land plants able to open and close in response to changes in light and carbon dioxide, they also responded to the key plant hormone abscisic acid which regulates stomatal function - especially under drought conditions - in modern plants.

These results show that the ability to regulate stomatal aperture in response to changing environmental conditions was already present very early in plant evolution.

Research on understanding how stomata work is also directly relevant to the agriculture needs of the twenty-first century because a key target for crop breeders is the development of new varieties that produce excellent yields but use less water in the process.

Professor Alistair Hetherington said: "Understanding how plants made the successful transition from life in water to the successful colonization of the drying terrestrial environment is one of the big questions in contemporary plant biology. Our work shows that the acquisition of stomata that were able to open and close in response to changing environmental conditions, thereby helping plants to avoid drying out, was a very important step in the evolution of the land flora."




Related Links
University of Bristol
Explore The Early Earth at TerraDaily.com

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



EARLY EARTH
Oceans played critical role in ancient global cooling
Troy NY (SPX) Jun 01, 2011
Thirty-eight million years ago, tropical jungles thrived in what are now the cornfields of the American Midwest and furry marsupials wandered temperate forests in what is now the frozen Antarctic. The temperature differences of that era, known as the late Eocene, between the equator and Antarctica were only half of what they are today. A debate has long been raging in the scientific commun ... read more


EARLY EARTH
Shipments Of Sea Launch Zenit-3Sl Hardware Resume On Schedule

US Army supports student launch program

Boeing Opens Exploration Launch Systems Office in Florida

Payload processing underway for ASTRA 1N

EARLY EARTH
Camera Duo on Mars Rover Mast Will Shoot Color Views

NC State Students Look To Support Manned Mission To Mars

New solar system formation models indicate that Jupiter's foray robbed Mars of mass

Opportunity Studies Rock Outcrop

EARLY EARTH
Looking at the volatile side of the Moon

The Power of A Moon Rock

Parts of moon interior as wet as Earth's upper mantle

NASA-Funded Scientists Make Watershed Lunar Discovery

EARLY EARTH
'Dwarf planet' is covered in crystal ice

Carbon monoxide detected around Pluto

The PI's Perspective: Pinch Me!

Later, Uranus: New Horizons Passes Another Planetary Milestone

EARLY EARTH
Rage Against the Dying of the Light

Second Rocky World Makes Kepler-10 a Multi-Planet System

Kepler's Astounding Haul of Multiple-Planet Systems Just Keeps Growing

Bennett team discovers new class of extrasolar planets

EARLY EARTH
ISRO to begin flight testing of GSLV MkIII in next two years

Teledyne and Aerojet form alliance to build rocket engines

Homemade Danish rocket takes off

U.K. spaceplane passes technical review

EARLY EARTH
Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

Venezuela, China to launch satellite next year

Top Chinese scientists honored with naming of minor planets

EARLY EARTH
Comet-chasing probe goes into hibernation in 10-year trek

Rosetta to sleep through loneliest leg of comet mission

Comet probe to enter 'hibernation'

CU-Boulder to participate in NASA mission to land on an asteroid


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement