Space Travel News  
IRON AND ICE
Abundant Ammonia In Ancient Asteroid

Nitrogen is essential for life on Earth and is also the fourth most abundant element in the Sun. Credit: ASU.
by Staff Writers
Moffett Field CA (SPX) Mar 09, 2011
An important discovery has been made with respect to the possible inventory of molecules available to the early Earth. Scientists led by Sandra Pizzarello, a research professor at Arizona State University, found large amounts of ammonia in a primitive Antarctic asteroid. This high concentration of ammonia could account for a sustained source of reduced nitrogen essential to the chemistry of life.

The work is being published in the Proceedings of the National Academy of Sciences (PNAS). The paper is titled, "Abundant ammonia in primitive asteroids and the case for a possible exobiology," and is co-authored by Pizzarello, geologist Lynda Williams, chemists Gregory Holland and Jeffery Yarger, all from ASU and Jennifer Lehman of UC Santa Cruz.

The finding of a high concentration of nitrogen-bearing molecules in an asteroidal environment shown by the new study is very provocative. Besides the noble gases, nitrogen is the fourth most abundant element in the Sun and the universe overall.

On the Earth, it is an indispensable ingredient of the biosphere, being essential to DNA, RNA and proteins. In other words, it is necessary for life's information transfer and catalytic processes.

"All origins-of-life theories need to account for a sustained source of reduced nitrogen in order to make amino acids and nucleobases," said Pizzarello, who works in ASU's Department of Chemistry and Biochemistry in the College of Liberal Arts and Sciences.

On the early Earth, on the other hand, the prebiotic inventory of reduced nitrogen necessary for the formation of N-containing biomolecules has been difficult to predict.

The hypotheses of a reducing atmosphere had initially allowed one to envision considerable ammonia abundance as well as evolutionary pathways for the production of amino acids. However, the current geochemical evidence of a neutral early Earth atmosphere, combined with the known photochemical destruction of ammonia, has left prebiotic scenarios struggling to account for a constant provision of ammonia.

An abundant exogenous delivery of ammonia, therefore, might have been significant in aiding early Earth's molecular evolution, as we should expect it to have participated in numerous abiotic as well as prebiotic reactions.

It also is interesting to note that the new PNAS work was made possible by the finding in Antarctica of these exceptionally pristine, ammonia-containing, asteroidal meteorites. Antarctic ices are good "curators" of meteorites.

After a meteorite falls - and meteorites have been falling throughout the history of Earth - it is quickly covered by snow and buried in the ice. Because these ices are in constant motion, when they come to a mountain, they will flow over the hill and bring meteorites to the surface.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Arizona State University
Asteroid and Comet Mission News, Science and Technology



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


IRON AND ICE
PS1 Telescope Establishes Near-Earth Asteroid Discovery Record
Honolulu HI (SPX) Feb 28, 2011
The Pan-STARRS PS1 telescope on Haleakala, Maui, discovered 19 near-Earth asteroids on the night of January 29, the most asteroids discovered by one telescope on a single night. "This record number of discoveries shows that PS1 is the world's most powerful telescope for this kind of study," said Nick Kaiser, head of the Pan-STARRS project. "NASA and the U.S. Air Force Research Laboratory's ... read more







IRON AND ICE
Indian Space Agency To Now Launch Three Satellites In April

New Dawn Arrives At Spaceport

ISRO Likley To Launch Resourcesat-2 In April

United Launch Alliance Launches Second OTV Mission

IRON AND ICE
Some Of Mars' Missing CO2 May Be Buried

Rover Snaps Close-Up of 'Ruiz Garcia'

Prolific NASA Orbiter Reaches Five-Year Mark

The Scars Of Impacts On Mars

IRON AND ICE
Astrobotic's Mission To The Moon Releases Guide For Payload Developers

China Expects To Launch Fifth Lunar Probe Change-5 In 2017

The Great Moonbuggy Race

Venus And Crescent Moon Pair Up At Dawn

IRON AND ICE
Can WISE Find The Hypothetical Tyche In Distant Oort Cloud

Theory: Solar system has another planet

Launch Plus Five Years: A Ways Traveled, A Ways To Go

Mission To Pluto And Beyond Marks 10 Years Since Project Inception

IRON AND ICE
Report Identifies Priorities For Planetary Science 2013-2022

Meteorite Tells Of How Planets Are Born In A Swirl Of Dust

Planet Formation In Action

'Missing' element gives planet birth clues

IRON AND ICE
SpaceX Expanding Texas Operations

Andrews Space Awarded USAF Reusable Booster System Study Contract

World's Largest Rocket Production Base Takes Shape In North China

SwRI Signs Up For 8 Reusable Suborbital Launches

IRON AND ICE
What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

China Expects To Launch Fifth Lunar Probe Chang'e-5 In 2017

IRON AND ICE
Abundant Ammonia In Ancient Asteroid

A New Dawn Coming To Vesta

PS1 Telescope Establishes Near-Earth Asteroid Discovery Record

Record number of asteroids spotted


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement