Subscribe free to our newsletters via your
. Space Travel News .

Why Study Plants in Space?
by Barbara Patterson for NASA Ames Research Center
Moffett Field CA (SPX) Nov 29, 2012

View of the TROPI seedling cassette for the European Modular Cultivation System, or EMCS, aboard the International Space Station Destiny laboratory module during Expedition 14. (NASA)

Why is NASA conducting plant research aboard the International Space Station? Because during future long-duration missions, life in space may depend on it. The ability of plants to provide a source of food and recycle carbon dioxide into breathable oxygen may prove critical for astronauts who will live in space for months at a time.

In addition, plants provide a sense of well-being. At the McMurdo Station for research in Antarctica - a site that in the dead of winter resembles the space station in its isolation, cramped quarters, and hostile environment - the most sought after section of the habitat is the greenhouse.

NASA and the European Space Agency, or ESA, are studying how plants adapt to micro- and low-gravity environments in a series of experiments designed to determine the ability of vegetation to provide a complete, sustainable, dependable and economical means for human life support in space.

As researchers continue to gain new knowledge of how plants grow and develop at a molecular level, this insight also may lead to significant advances in agriculture production on Earth.

Plant biology experiments on the space station using the European Modular Cultivation System, or EMCS, allow scientists to investigate plant growth and the processes within their cells to understand how plant life responds to conditions in space.

Researchers currently are planning three new plant growth investigations specifically designed to examine the growth of seedlings in microgravity using this facility.

Combining the proposals of NASA Principal Investigator John Z. Kiss, and ESA Principal Investigator Javier Medina, the Seedling Growth investigation will continue at the space station for a series of experiments: Seedling Growth 1, 2 and 3 in 2013, 2014 and 2015 respectively. The results of these experiments will help researchers understand how plants sense and respond to the space environment.

Once aboard the space station, astronauts will conduct experiments to examine the seedlings' cultivation and stimulation under controlled temperature, atmosphere composition, limited water supply, illumination and acceleration conditions using centrifuges.

Because the station crew is key to the success of the experiments, crew members will receive significant training, including on-board computer video instruction.

Thus far, NASA's Ames Research Center, Moffett Field, Calif., has completed three experiments using the EMCS. The 2006 study called Root Phototropism, or Tropi, used Thale cress (Arabidopsis thaliana) seeds from the mustard family to investigate how plant roots respond to varying levels of light and gravity. Using a rotating centrifuge, Kiss designed the experiment to expose the plants to different gravity conditions.

In 2010, the Tropi-2 experiment expanded on the knowledge gained from the first Tropi investigation. Collectively, the two studies demonstrated how red and blue light affects plant growth differently at varied levels of gravity. With this information, researchers now know that they can optimize plant root and shoot growth in space by fine-tuning the plants' exposure to light.

Most recently, the Plant Signaling space experiment, led by Principal Investigator Imara Perera, research associate professor at North Carolina State University, Raleigh, N. C., studied the roots and shoots of wild type and genetically modified Thale cress plant seedlings in microgravity and 1g - a simulation of Earth's gravity.

Images of the seedlings were sent to Earth before astronauts harvested and preserved the seedlings for post-flight analysis. The frozen plants are scheduled to return to Earth in 2013 aboard a SpaceX Dragon capsule.

The analysis of these data will lead to an understanding of the molecular mechanisms plants use to sense and respond to changes in their environment. Insights gained from this study will help scientists identify plants that are better able to withstand long duration spaceflight and microgravity conditions.

Unique Environments Demand Specialized Equipment
Provided by ESA, the EMCS consists of a holding structure filling four station lockers and includes an incubator with two centrifuges. Two to four Ames-developed Experiment Containers, or ECs, can mount to each of the two centrifuge rotors to allow scientists to perform experiments at various g-levels up to twice Earth's gravity, or 2g.

The EMCS design enables control of temperature, humidity, oxygen and carbon dioxide. Equipped with white and infrared lights, EMCS also can control g-level simulation and water to perform experiments with biological samples.

Video observation, imaging, data handling and command systems allow for control of the experiments inside the ECs. The ECs have specialized systems to study cell biology, small aquatic animals, roundworms, fruit flies and plants.

NASA's Ames Research Center worked closely with ESA to develop specific experimental units designed to grow plant seedlings, particularly Thale Cress, as well as other plant species.

The hardware has performed flawlessly in supporting the Tropi-1, Tropi-2 and Plant Signaling experiments and will be used in the upcoming Seedling Growth study.


Related Links
Plant Signaling experiments
European Modular Cultivation System
Space Tourism, Space Transport and Space Exploration News

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Space-age food served up with seeds of success
Beijing (XNA) Sep 04, 2012
An eggplant the size of a basketball, and a cucumber half a meter long seem, at first glance, out of this world. They are, literally. Chinese scientists have created more than 120 varieties of plants by sending seeds into space over the past 25 years. The varieties are making their way to dining tables and even grabbing a market share in some areas, industry insiders said. In Northwest Chi ... read more

South Korean rocket launch suspended

EchoStar and Arianespace sign new satellite launch services contract

Soyuz ready for Friday launch of Pleiades 1B at Kourou

Sea Launch Postpones Satellite Launch Until Dec. 3

Regional Dust Storm Dissipating

One Year After Launch, Curiosity Rover Busy on Mars

Fostering Curiosity: Mars Express relays rocky images

Matijevic Hill Survey Complete And Rover Passes 22 Miles Of Driving!

China's Chang'e-3 to land on moon next year

Moon crater yields impact clues

Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

Dwarf planet Makemake lacks atmosphere

Keck Observations Bring Weather Of Uranus Into Sharp Focus

At Pluto, Moons and Debris May Be Hazardous to New Horizons Spacecraft During Flyby

Sharpest-ever Ground-based Images of Pluto and Charon: Proves a Powerful Tool for Exoplanet Discoveries

Low-mass planets make good neighbours for debris discs

Dust Grains Highlight the Path to Planet Formation

Magnesium oxide: From Earth to super-Earth

Rare image of Super-Jupiter sheds light on planet formation

Researchers test novel power system for space travel

Secret mini-shuttle launch delayed

Supersonic Decelerator Project 'On Track' for Success

S. Korea rocket launch set for Nov 29

Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

Nine Radar Images of Asteroid 2007 PA8

DARPA's Advanced Space Surveillance Telescope Could Be Looking Up From Down Under

Comet collisions every 6 seconds explain 17-year-old stellar mystery

NASA Radar Images Asteroid 2007 PA8

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement