Subscribe free to our newsletters via your
  Space Travel News  

Subscribe free to our newsletters via your

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's
by Staff Writers
Boulder CO (SPX) Nov 10, 2015

Scientists at Southwest Research Institute combined dynamical, thermal, and chemical Moon formation models to explain key differences between the composition of lunar rocks and the Earth's. The Moon's lack of easily vaporized elements provides evidence about how the Earth-Moon system formed 4.5 billion years ago.

Scientists at Southwest Research Institute combined dynamical, thermal, and chemical models of the Moon's formation to explain the relative lack of volatile elements in lunar rocks. Lunar rocks closely resemble Earth rocks in many respects, but Moon rocks are more depleted in volatile elements like potassium, sodium, and zinc, which tend to have lower boiling points and vaporize readily.

"Explaining the Moon's volatile depletion has been a long-standing mystery, and yet it is a key piece of evidence about how the Earth-Moon system formed," said Dr. Robin Canup, associate vice president in SwRI's Space Science and Engineering Division and lead author of the Nature Geoscience paper detailing the findings.

Scientists think the Moon formed from an Earth-orbiting disk of vapor and molten matter produced by a giant impact between Earth and another Mars-sized body approximately 4.5 billion years ago. Previously, scientists had considered that volatiles vaporized by the impact might have escaped before the Moon formed.

"However, few volatiles may have actually been lost because the velocity needed to escape the Earth's gravity is quite high," said Canup. "The new research suggests instead that as the Moon completed its growth, volatile-rich melt was preferentially deposited onto the Earth, rather than onto the growing Moon."

Canup's team - which included researchers from SwRI, Dordt College, and Washington University - began with an existing computer simulation of the Moon's accumulation from the disk. This was combined with models for how the temperature and chemical composition of the disk material evolve with time.

The models show that the Moon acquires about the final half of its mass from melt condensed in the inner portions of the disk, close to the Earth and just inside the Moon's initial orbit. Over time, the Moon's orbit expands due to dynamical interactions with inner disk material. When the Moon is distant enough, it can no longer efficiently accumulate inner disk melt, which is instead scattered inward and assimilated by the Earth.

"We find that the inner disk melt remains hot and volatile-poor as it accretes onto the Moon. Eventually the disk cools and volatiles condense. But by the time this occurs the Moon's accumulation from this inner disk region has essentially terminated," said Canup. "So the final materials the Moon accumulates are lacking in volatile elements, even in the absence of escape."

The authors suggest that the materials the Moon initially accumulates from the outer disk could be volatile-rich, followed by a final 100- to 500-kilometer layer of volatile-poor material. In that case, the Moon's volatile content could then increase with depth, depending on the extent of mixing in the Moon's interior.

The paper, "Lunar Volatile Depletion Due to Incomplete Accretion Within an Impact - Generated Disk," was published online in Nature Geoscience on Nov. 9, 2015. This work was funded in part by the NASA Solar System Exploration Research Virtual Institute (SSERVI).


Related Links
Southwest Research Institute
Mars News and Information at
Lunar Dreams and more

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Gaia's sensors scan a lunar transit
Paris (ESA) Nov 09, 2015
Located 1.5 million km from the Earth, ESA's Gaia spacecraft is scanning the sky to conduct the most detailed census of stars in our Galaxy. However, on 6 November, it will be perfectly placed to witness a rare event that will involve objects much closer to home - a lunar transit across the Sun. Transits occur when planets move in front of a nearby star. Such events occur occasionally in o ... read more

Commercial Spaceflight Gets A Boost With Latest Congressional Moves

The 10th Arianespace mission of 2015 is "go" for its Ariane 5 liftoff next week

USAF releases first Booster Propulsion Technology Maturation BAA Award

SpaceLoft demonstrates capability to eject separate payloads requiring independent re-entry

Amnesia Event Slows Down Opportunity Robotic Arm Work

Swiss Camera Leaves for Mars

NASA mission reveals speed of solar wind stripping Martian atmosphere

Martian desiccation

Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

New Horizons Yields Wealth of Discovery from Pluto Flyby

Ammonia-Water Slurry May Swirl Below Pluto's Icy Surface

New Horizons Completes Targeting Maneuvers

The Youngest Crater on Charon

Distant world's weather is mixed bag of hot dust and molten rain

Disk gaps don't always signal planets

Finding New Worlds with a Play of Light and Shadow

Did Jupiter Expel A Rival Gas Giant

BAE and Reaction Engines to develop a new aerospace engine

Rocket Lab selects Alaska Aerospace for electron launch range safety

Antares rocket engine failure causes

Antares rocket explosion revealed in fiery new NASA photos

China's self-developed Mars probe to be on show

Could Sino-U.S. cooperation bring the Martian home?

China's scientific satellites to enter uncharted territory

Declaration approved to promote Asia Pacific space cooperation

One year after comet touchdown, what's next for Philae?

Chances 'fair' for Philae contact: ground controllers

Radar Images Provide New Details on Halloween Asteroid

Halloween asteroid gives us a miss, confirms ESA

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.