Subscribe to our free daily newsletters
  Space Travel News  




Subscribe to our free daily newsletters



Rocket Mystery Explained With New Imaging Technique

An image of destructive acoustic waves building inside a small, simulated rocket combustor.
by Staff Writers
Atlanta GA (SPX) Apr 10, 2008
There's a strange wave phenomenon that's plagued rocket scientists for years, a lurking threat with the power to destroy an engine at almost any time. For decades, scientists have had a limited understanding of how or why it happens because they could not replicate or investigate the problem under controlled laboratory conditions.

Scientists generally believe that these powerful and unstable sound waves, created by energy supplied by the combustion process, were the cause of rocket failures in several U.S. and Russian rockets. Scientists have also observed these mysterious oscillations in other propulsion and power-generating systems such as missiles and gas turbines.

Now, researchers at the Georgia Institute of Technology have developed a liquid rocket engine simulator and imaging techniques that can help demystify the cause of these explosive sound waves and bring scientists a little closer to being able to understand and prevent them.

The Georgia Tech research team was able to clearly demonstrate that the phenomenon manifests itself in the form of spinning acoustic waves that gain destructive power as they rotate around the rocket's combustion chamber.

"This is a very troublesome phenomenon in rockets," said Ben Zinn, the David S. Lewis Jr. Chair and Regents' Professor in the Guggenheim School of Aerospace Engineering at Georgia Tech. "These spinning acoustic oscillations destroy engines without anyone fully understanding how these waves are formed. Visualizing this phenomenon brings us a step closer to understanding it."

The research was presented at the 2008 American Institute of Aeronautics and Astronautics (AIAA) Aerospace Sciences Meeting in Reno, Nevada, and funded by the Air Force Office of Scientific Research.

During past investigations into this damaging instability, scientists were able to observe initial stages of the problem but were forced to shut down engines before the waves could fully develop and cause serious damage to the engine. Researchers were also hindered by their inability to clearly observe the complex processes inside the investigated rocket engines.

But with a great deal of help from Dr. Oleksandr Bibik, a visiting physicist and research scientist from Ukraine, the Georgia Tech research team developed an experimental setup and imaging technique that provides detailed information on how these waves form and behave - without blowing up an engine or endangering lives.

First, the researchers developed a low-pressure combustor that serves as a true simulator of larger rocket engines. Bibik then used a very-high-speed camera in combination with series of fiber optic probes that together allowed researchers to clearly observe the formation and behavior of excited spinning sound waves within the engine.

Additionally, Bibik's new imaging method enabled researchers to determine the conditions under which these waves are excited and how they can be controlled.

Bibik's method uses a high-speed camera to view the reaction zone via a system of filters that allow only specific light radiation generated in the combustion zone to reach the camera's lens.

This strategy eliminates all background light interference and provides clear images of combustion (and sound) waves spinning around the engine's periphery. Simultaneously, strategically placed fiber optic probes collect information on the reaction process oscillations in various locations in the combustor.

Using these new techniques, the research team discovered that the destructive waves gained energy as they spun around the engine's periphery at a rate of 5,000 revolutions per second.

The capability to simulate and observe these destructive oscillations in a controlled laboratory environment could help researchers develop techniques to prevent their occurrence in real engines.

"Better understanding this phenomenon could very likely lead to safer tactical and space missions and save billions of dollars for technologies that use combustors," Zinn said.

Related Links
Guggenheim School of Aerospace Engineering
Rocket Science News at Space-Travel.Com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NASA Awards Contract For Engine Technology Development
Cleveland OH (SPX) Apr 10, 2008
NASA has awarded a contract to Aerojet-General of Sacramento, Calif., to design, develop, fabricate, test and evaluate a workhorse rocket engine using liquid oxygen and liquid methane as propellants. Aerojet will work for 21 months from the effective date of the contract to complete an evaluation of the rocket engine assembly, a 5,500 pound constant-thrust, pressure-fed rocket engine.







  • Rocket Mystery Explained With New Imaging Technique
  • NASA Awards Contract For Engine Technology Development
  • SpaceX Conducts First Three-Engine Firing Of Falcon 9 Rocket
  • European Space Truck Jules Verne In Parking Orbit

  • Russia To Conduct 28 Space Launches From Baikonur In 2008
  • Vietnam delays launch of first satellite
  • Zenit Rocket To Orbit Israeli Satellite In Late April
  • Successful Qualification Firing Test For Zefiro 23

  • NASA reschedules shuttle launch date
  • Shuttle Endeavour returns after record-setting mission to ISS
  • Endeavour Crew Prepares For Landing
  • Shuttle Endeavour's landing delayed at Cape Canaveral

  • Astronauts Relish New Asian Space Food As Expedition 17 Docks
  • First Korean astronaut docks with space station
  • The ESA opens a new space laboratory
  • New Station Crew Prepares For Launch Tuesday

  • Astronauts relish new Asian space food
  • Hall of fame inducts NASA technologies
  • NASA officials report Goddard 'incident'
  • NASA starts new science Web site

  • Three Rocketeers For Shenzhou
  • China's space development can pose military threat: Japan
  • Cassini Tastes Organic Material At Saturn's Geyser Moon
  • China Approves Second-Phase Lunar Probe Program

  • Surgeons use robots during heart surgery
  • European Space Freighter cleared to dock with ISS: ESA
  • Toshiba robot can do the job of the remote control
  • Jules Verne Set For Next Step On Road To Automated Station Docking

  • Spirit Advances Toward Midwinter
  • NASA Spacecraft Images Mars Moon In Color And In 3D
  • Visting Mars, Again And Again
  • Spirit Phones Home To Reset Clock As Energy Levels Plummet For Mars Rover

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement