. Space Travel News .

Not your average heat shield
by Staff Writers
Washington DC (SPX) Mar 27, 2012

This figure shows that the object in the center of the cloak (letters OSA) stays cold, while the heat diffuses elsewhere. The source of the heat is on the left-hand side and at a constant temperature of 100 degrees C, and the material inside the invisibility region remains cold. Credit: Image courtesy Sebastien Guenneau, Institut Fresnel, CNRS/AMU.

In a new approach to invisibility cloaking, a team of French researchers has proposed isolating or cloaking objects from sources of heat-essentially "thermal cloaking."

This method, which the researchers describe in the Optical Society's (OSA) open-access journal Optics Express, taps into some of the same principles as optical cloaking and may lead to novel ways to control heat in electronics and, on an even larger scale, might someday prove useful for spacecraft and solar technologies.

Recent advances in invisibility cloaks are based on the physics of transformation optics, which involves metamaterials and bending light so that it propagates around a space rather than through it.

Sebastien Guenneau, affiliated with both the University of Aix-Marseille and France's Centre National de la Recherche Scientifique (CRNS), decided to investigate, with CRNS colleagues, whether a similar approach might be possible for thermal diffusion.

"Our key goal with this research was to control the way heat diffuses in a manner similar to those that have already been achieved for waves, such as light waves or sound waves, by using the tools of transformation optics," says Guenneau.

Though this technology uses the same fundamental theories as recent advances in optical cloaking, there is a key difference. Until now, he explains, cloaking research has revolved around manipulating trajectories of waves.

These include electromagnetic (light), pressure (sound), elastodynamic (seismic), and hydrodynamic (ocean) waves. The biggest difference in their study of heat, he points out, is that the physical phenomenon involved is diffusion, not wave propagation.

"Heat isn't a wave-it simply diffuses from hot to cold regions," Guenneau says. "The mathematics and physics at play are much different. For instance, a wave can travel long distances with little attenuation, whereas temperature usually diffuses over smaller distances."

To create their thermal invisibility cloak, Guenneau and colleagues applied the mathematics of transformation optics to equations for thermal diffusion and discovered that their idea could work.

In their two-dimensional approach, heat flows from a hot to a cool object with the magnitude of the heat flux through any region in space represented by the distance between isotherms (concentric rings of diffusivity).

They then altered the geometry of the isotherms to make them go around rather than through a circular region to the right of the heat source-so that any object placed in this region can be shielded from the flow of heat (see image).

"We can design a cloak so that heat diffuses around an invisibility region, which is then protected from heat. Or we can force heat to concentrate in a small volume, which will then heat up very rapidly," Guenneau says.

The ability to shield an area from heat or to concentrate it are highly desirable traits for a wide range of applications. Shielding nanoelectronic and microelectronic devices from overheating, for example, is one of the biggest challenges facing the electronics and semiconductor industries, and an area in which thermal cloaking could have a huge impact.

On a larger scale and far into the future, large computers and spacecraft could also benefit greatly. And in terms of concentrating heat, this is a characteristic that the solar industry should find intriguing.

Guenneau and colleagues are now working to develop prototypes of their thermal cloaks for microelectronics, which they expect to have ready within the next few months.

Paper: "Transformation Thermodynamics: Cloaking and Concentrating Heat Flux," Guenneau et al., Optics Express, Vol. 20, Issue 7, pp. 8207-8218.

Related Links
Optical Society of America
Space Tourism, Space Transport and Space Exploration News

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries

And it's 3... 2... 1... blastoff! Discover the thrill of a real-life rocket launch.


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SciTechTalk: Can long space missions work?
Washington DC (UPI) Mar 25, 2012
As the United States considers a manned mission to Mars by the mid-2030s, ongoing research is beginning to raise doubts about the ability of human astronauts to survive such a multi-year journey in zero gravity without severe and possibly permanent physical or psychological damage. One of the most pressing concerns, researchers say, would be the effect on their vision, as acceleration o ... read more

ILS Proton Launches Intelsat 22

US ramping up private sector's role in spaceflight

Europe's smart supply ship on its way to Space Station

Third Ariane 5 ready for launch in 2012

A glow in the Martian night throws light on atmospheric circulation

Mars Science Laboratory Adjusts Orbital Path And Tests Instruments

Geologists discover new class of landform - on Mars

Red Food For the Red Planet

NASA's Grail MoonKam Returns First Student-Selected Lunar Images

Ecliptic "MoonKAM" Systems Begin Operations in Lunar Orbit

Two New NASA LRO Videos: See Moon's Evolution, Take a Tour

China to get lunar soil

New Horizons on Approach: 22 AU Down, Just 10 to Go

Runaway Planets Zoom at a Fraction of Light-Speed

Some orbits more popular than others in solar systems

Herschel's new view on giant planet formation

Kepler Statistical Analysis Suggests Earthlike Planets Extremely Rare

N. Korea takes rocket main body to launch site

NASA Sub-Scale Solid-Rocket Motor Tests Material for Space Launch System

Pratt and Whitney Rocketdyne Hot-Fires Launch Abort

NASA Sub-Scale Solid-Rocket Motor Tests Material for Space Launch System

China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

New NEO Website Tool Now Available

Dawn Sees New Surface Features on Giant Asteroid

Near-miss asteroid will return next year

Dear Ups and Dawns

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement