Space Travel News  
OIL AND GAS
A new model for capillary rise in nano-channels offers insights into fracking
by Staff Writers
Washington DC (SPX) Mar 23, 2017


A model of a nano-capillary. The cylinders depict the inherent roughness of the surface of the capillary wall. Image courtesy Anqi Shen, Yikun Liu, Xiaohui Qiu, Yongjun Lu and Shuang Liang.

In the last decades, hydraulic fracturing or "fracking," a method of oil and gas extraction, has revolutionized the global energy industry. It involves fracturing rock with a pressurized liquid or "fracking fluid" (water containing sand suspended with the aid of thickening agents) to draw out small oil and gas deposits trapped in stone formations.

After the water molecules of the fracking fluid are injected into these formations, they rise up the stone walls of the small channels where they have flowed. They can then undergo "imbibition," a type of diffusion that involves them being absorbed via nano-pores into the neighboring pockets where the oil and gas reside. As the water molecules are absorbed, the oil and gas molecules are displaced and can then be pumped to the surface. This activity is driven by the capillary force between the water and oil, which results from the tension generated at the interface or point where the two fluids meet.

Scientists have typically calculated the expected level of capillary rise in these conditions with the Lucas-Washburn equation, a mathematical model whose earliest parameters were first devised nearly a century ago. The challenge, however, is that that the equation has not been completely accurate in predicting the actual rise observed in nano-capillary laboratory experiments.

"The height of the capillary rise that was observed in these experiments was lower than what the Lucas-Washburn model would have predicted," explained Anqi Shen, a doctoral student at China's Northeast Petroleum University who works closely with Yikun Liu, a professor at the university. "Understanding what was causing this deviation became an important point of focus for my colleagues and me."

The researchers describe their findings this week in the journal Applied Physics Letters, from AIP Publishing.

"Many explanations have been offered for the lower-than-expected capillary rise. One area of discussion has focused on the viscosity of the fluid. Another has been the sticky layers of oil that form on the walls of the capillaries and narrow their diameter, which is an issue that we have also explored," Shen said, whose work is also funded by the Major Projects Program for the National Science and Technology of China.

"We looked at many factors and found that the surface roughness of the capillaries was the main reason for the lower-than-expected result. Specifically, we realized that the model could better determine the actual level of capillary rise if we adjusted the parameters to account for the frictional drag that is caused by the inherent roughness of the surface of the capillary walls. When we saw how this made the model more accurate, we knew that we could not ignore it," Shen said.

Moreover, the miniscule size of the capillaries means that even small increases in surface roughness can make a significant impact on calculations.

"Factors that might be ignored in normal conditions can have significant effects on a micro or nano level. For instance, a relative roughness of 5 percent, in a tube with a radius of 100 cm where the obstacle height is 5 cm hardly affects the fluid flow in the tube. However, with a tube radius of 100 nm and obstacle height of 5 nm, it could significantly affect the fluid flow in the tube," Shen said.

Currently, there are only a few labs carrying out nano-capillary rise experiments. As a result, Shen and her colleagues could only work with the results from one laboratory in the Netherlands. Going forward, they intend to verify their mathematical formula by examining its effectiveness at simulating the results of other experiments.

Although Shen's research focuses on oil and gas development, she and her colleagues hope that their work can be of use to scientists working in other fields.

"Capillary rise is a basic, physical phenomenon that occurs in soil, paper, and other biologically relevant realms," Shen said. "Understanding how it is potentially affected at the nano-capillary level by frictional drag could shed light in a variety of scientific disciplines."

The article, "A model for capillary rise in nano-channels with inherent surface roughness," is authored by Anqi Shen, Yikun Liu, Xiaohui Qiu, Yongjun Lu and Shuang Liang. The article will appear in the Applied Physics Letters March 21, 2017 (DOI: 10.1063/1.4977773).

OIL AND GAS
Market may be ripe for U.S. offshore oil and gas bids
Washington (UPI) Mar 22, 2017
Energy sector interest in the central waters of the Gulf of Mexico is high because of market conditions and U.S. government interest, a trade group said. The U.S. Bureau of Ocean Energy Management scheduled an auction Wednesday for 48 million acres off the coasts of Alabama, Louisiana and Mississippi for oil and natural gas exploration and development. It's the 12th such auction under a ... read more

Related Links
American Institute of Physics
All About Oil and Gas News at OilGasDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OIL AND GAS
OIL AND GAS
ExoMars: science checkout completed and aerobraking begins

Mars Rover Tests Driving, Drilling and Detecting Life in Chile's High Desert

Opportunity Driving South to Gully

NASA Mars Orbiter Tracks Back-to-Back Regional Storms

OIL AND GAS
Team Indus To Send Seven Experiments To The Moon Including Three From India

Sun Devils working for a chance to induce photosynthesis on our lunar neighbor

NASA finds missing LRO, Chandrayaan-1 lunar orbiters

Under Trump, the Moon regains interest as possible destination

OIL AND GAS
ESA's Jupiter mission moves off the drawing board

NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution

Juno to remain in current orbit at Jupiter

OIL AND GAS
Fossil or inorganic structure? Scientists dig into early life forms

Gigantic Jupiter-type planet reveals insights into how planets evolve

Operation of ancient biological clock uncovered

Visualizing debris disk "roller derby" to understand planetary system evolution

OIL AND GAS
N. Korea's Kim hails engine test as 'new birth' for rocket industry

SpaceX launches EchoStar XXIII comms satellite into orbit

US BE-4 Rocket Engines to Replace Russian RD-180 on Atlas Carrier Rockets

Kennedy's Multi-User Spaceport Streamlines Commercial Launches

OIL AND GAS
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

OIL AND GAS
Cryovolcanism on Dwarf Planet Ceres

Warped Meteor Showers Hit Earth at All Angles

Mechanism underlying size-sorting of rubble on asteroid Itokawa revealed

Earth is bombarded at random, crater study shows









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.