Subscribe free to our newsletters via your
. Space Travel News .

A nanoscale solution to the big problem of overheating in microelectronic devices
by Staff Writers
Los Angeles CA (SPX) Feb 11, 2015

This composite image shows density (grey) and temperature (color) maps of a 100 nm-wide polycrystalline aluminum wire. The temperature is computed from the density using aluminum's known thermal expansion. Lower densities appear at crystal-grain boundaries, which are atomic-scale features, and where thermal expansion has caused the aluminum to expand. One end of the wire (green) is near room temperature, and the other (orange) is 160 K warmer. Image courtesy USC CEMMA and UCLA Regan Group.

Anyone who has ever toasted the top of their legs with their laptop or broiled their ear on a cell phone knows that microelectronic devices can give off a lot of heat. These devices contain a multitude of transistors, and although each one produces very little heat individually, their combined thermal output is significant and can damage the device.

Thermal management is an ongoing struggle for the electronics industry as there is currently no way to accurately measure temperature at the scale of individual microelectronic devices. Overheating is an even bigger problem for the roomfuls of servers needed in data storage.

Although their small size helps make transistors and other microelectronic devices useful, it foils attempts to determine which areas in the device are hottest. The mere introduction of a probe, typically larger than the microelectronic device itself, affects the device's temperature and precludes an accurate reading. As a result, microelectronic device manufacturers must rely on simulations alone to understand the temperatures inside individual devices.

"If you just simulated the temperature in a microelectronic device, the next thing you want to do is measure the temperature and see if you're right," said Matthew Mecklenburg, a senior staff scientist at the University of Southern California's Center for Electron Microscopy and Microanalysis (CEMMA). "But a persistent question has been how to make these measurements."

Associated with the USC Viterbi School of Engineering and the USC Dana and David Dornsife College of Letters, Arts and Sciences, USC CEMMA provides research tools for imaging, visualization, and analysis of nano-scale features and structures.

In a paper published in Science on February 6, a research team led by Mecklenburg and Chris Regan of University of California Los Angeles (UCLA), presented findings that are a major step forward in understanding temperatures in microelectronic devices.

To avoid altering the device's temperature they decided to forego a thermometric probe altogether. They realized that the material being imaged could act as its own thermometer.

All materials change volume depending on their temperature. Therefore, a material's temperature can be determined by carefully measuring its volume, or equivalently, its density. In this case, aluminum was used because its thermal expansion is relatively large.

To measure its density the team aimed the imaging beam from a transmission electron microscope (TEM) at the aluminum, which caused the charges within the aluminum to oscillate.

These charge oscillations, or plasmons, have long been known to shift depending on a material's density, but until now they had not been analyzed carefully enough to extract a local temperature measurement. Using the TEM and electron energy loss spectroscopy (EELS), the team was able to quantify the energy of the aluminum plasmon and precisely determine its temperature with nanometer-scale resolution.

"Every semiconductor manufacturer measures the size of their devices in transmission electron microscopes," said Mecklenburg. "Now, in the same microscope, they can measure temperature gradients in an individual device."

Named Plasmon Energy Expansion Thermometry (PEET), this new technique can be used to effectively measure the temperatures within a transistor by measuring the expansion of materials already contained in the device.

"This technique is sensitive to the bulk material, not just the surface," said Mecklenburg. "Measurements of temperatures hidden inside a device will enable better thermal management, which means faster transistors and lower power consumption: your cell phone will hold its charge longer."

The research team also included USC Viterbi associate professor Stephen Cronin and electrical engineering doctoral student Rohan Dhall, William Hubbard and E.R. White of UCLA as well as Shaul Aloni of the Lawrence Berkeley National Laboratory.

The team will next translate this technique to other materials including silicon, a staple in transistors. Many common metals and semiconductors have the proper characteristics that will allow them to serve as their own thermometers. By applying PEET to other materials used in CPUs and transistors, researchers will be able to accurately map temperatures in microelectronic devices while they are in operation, as well as develop more efficient CPUs and transistors that dissipate less heat.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
University of Southern California
Nano Technology News From
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

X-ray pulses uncover free nanoparticles for the first time in 3-D
Hamburg, Germany (SPX) Feb 11, 2015
For the first time, a German-American research team has determined the three-dimensional shape of free-flying silver nanoparticles, using DESY's X-ray laser FLASH. The tiny particles, hundreds of times smaller than the width of a human hair, were found to exhibit an unexpected variety of shapes, as the physicists from the Technical University (TU) Berlin, the University of Rostock, the SLA ... read more

SpaceX cargo craft returns to Earth

High seas force SpaceX to ditch bid to recycle rocket

Soyuz Installed at Baikonur, Expected to Launch Wednesday

SpaceX to try rocket recycle launch on Tuesday

NASA Spacecraft Completes 40,000 Mars Orbits

NASA's Curiosity Analyzing Sample of Martian Mountain

Mars Rover Nearing Marathon Achievement

Mars Orbiter Spies Curiosity Rover at Work

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

Service Module of Chinese Probe Enters Lunar Orbit

New Horizons snaps new images of Pluto en route to historic flyby

Something Special in the Air

NASA craft set to beam home close-ups of Pluto

New Horizons ready for planet's beyond beyond

Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

Dawn ahead!

Habitable Evaporated Cores

ESA experimental spaceplane completes research flight

NASA Prepares New Sounding Rocket Motor For First Test Firing

Europe to test wingless 'space plane'

Eruptions Evicted: Anti-geyser Testing Completed for SLS Liquid Oxygen Tank

More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

Number of Known Accessible Near-Earth Asteroids Doubles Since 2010

Why Comets Are Like Deep Fried Ice Cream

Rosetta photos: Comet's material becoming more volatile as it nears sun

Dawn Gets Closer Views of Ceres

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.