. Space Travel News .

A mole to explore the interior of Mars
by Staff Writers
Berlin, Germany (SPX) May 30, 2011

illustration only

The final contenders in NASA's Discovery programme, which invites scientists to propose unmanned planetary missions, have been announced. The Geophysical Monitoring Station (GEMS) for Mars mission proposal has made it to the final round of decision-making. The German Aerospace Center is significantly involved with the geophysical experiment, which will explore the interior of Mars.

The main objective of the mission, which could launch in early 2016, is to obtain a unique impression of the 'interior life' of Mars through a series of direct measurements.

An instrumented mole system equipped with temperature sensors, the Heat Flow and Physical Properties Package or 'HP Cube' (HP3), will penetrate up to five metres into the surface of Mars to measure the heat flow from the Martian interior.

"HP3 will give us new insights into the thermal development of Mars, and to water reserves that could be concealed beneath its surface. This experiment has been carefully planned, and its outcomes could drive Mars research significantly forward," states Tilman Spohn, scientific lead for HP3 and Head of the DLR Institute of Planetary Research in Berlin-Adlershof.

"DLR is proud at the fact that its HP3 experiment is one of the successful mission proposals and could be a part of the next NASA Discovery mission. The involvement in the GEMS mission proposal falls within DLR's strategy of building on international collaboration in the exploration of space." Following the Mars Pathfinder mission back in 1997, DLR is currently a partner on two current missions in the NASA Discovery programme.

DLR is contributing cameras, spectrometers and image processing expertise on the MESSENGER spacecraft to Mercury and on the Dawn spacecraft, which will be exploring the asteroids Vesta and Ceres. The aim of the Discovery missions is to explore the Solar System with a limited budget of 500 million US dollars.

Three million US dollars to develop the project further
The GEMS science team, led by Bruce Banerdt at NASA's Jet Propulsion Laboratory in Pasadena, California, will receive three million US dollars to develop this project further.

"The experiment has already reached a high level of technological maturity - which is why our HP3 proposal is ahead in development terms compared to similar experiments," explains Tilman Spohn. In the course of the last year, 28 mission proposals have been submitted to NASA. Besides GEMS only two other mission proposals are left in the race for this Discovery mission.

The Titan Mare Explorer (TiME) is intended to explore a hydrocarbon lake on Saturn's moon Titan. The Comet Hopper is designed to conduct detailed investigations of comet 46P/Wirtanen. The final decision will be taken in 2012, with a launch most likely be in 2016..

A fully automated journey to the interior of Mars
The HP3 experiment uses an electromechanical impact mechanism capable of driving an instrument container into the Martian surface to a depth of up to five metres. "Until now, a fully-automatic mole of this kind has never been used on any planetary body in our Solar System," states Tim van Zoest, a physicist at the DLR Institute of Space Systems in Bremen, where the impact mechanism was developed.

"Comparable experiments to analyse material below the planet's surface have only been conducted manually on the Moon during the US Apollo missions 15 and 17 in the early seventies. But the tools used then were similar to conventional drills, drilled into the Moon's surface by muscular power, much like a corkscrew."

The sensors on HP3 were developed at the DLR Institute of Planetary Research in collaboration with the Space Research Institute of the Austrian Academy of Science in Graz. In particular, the mole will monitor the heat flow inside the Martian surface.

"The precise and direct measurement of heat flow under the surface will enable us to determine the heat produced deep inside Mars. This will give us insights into the composition of the Red Planet and its ongoing cooling process, which is related to the present volcanic activity," explains Matthias Grott from the DLR Institute of Planetary Research.

"In addition, HP3 will study the geological stratification of the first five metres below the surface of Mars - especially the presence of ice - through measurement of the geoelectrical properties of the ground," adds the physicist.

Further European involvement in the GEMS mission proposal involves the seismometer, under French management control at the Institut de Physique du Globe de Paris (IPGP).

The Max-Planck Institute for Solar System Research in Katlenburg-Lindau, in the German Harz region, is developing a system that will be able to install on the seismometer on Mars, under the leadership of Ulrich Christensen. The seismometer will record Marsquakes and asteroid impacts. These seismic vibrations - similar to those on Earth - pass through the entire body of the planet.

Seismometer measurements can therefore be used to infer the size and properties of the crust, mantle and planetary core of Mars. The third scientific payload in the GEMS mission proposal is an experiment developed under the management of the US company Lockheed Martin, and is intended to increase our understanding of the internal structure of Mars.

Related Links
DLR Institute of Planetary Research
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Mars Formed Rapidly into Runt of Planetary Litter
Chicago IL (SPX) May 26, 2011
Mars developed in as little as two to four million years after the birth of the solar system, far more quickly than Earth, according to a new study published in the May 26 issue of the journal Nature. The red planet's rapid formation helps explain why it is so small, say the study's co-authors, Nicolas Dauphas at the University of Chicago and Ali Pourmand at the University of Miami (UM) Rosensti ... read more

Cosmica Spacelines And XCOR Aerospace Tout Suborbital Payload Flight Opportunties

Should India Go Suborbital

ASTRA 1N delivered to French Guiana

Russia sends two Soyuz carrier rockets to French Guiana

Opportunity Spies Outcrop Ahead

A mole to explore the interior of Mars

Mars Formed Rapidly into Runt of Planetary Litter

NASA's Spirit Rover Completes Mission on Mars

Parts of moon interior as wet as Earth's upper mantle

NASA-Funded Scientists Make Watershed Lunar Discovery

Moon may have more water than believed: study

President Kennedy's Speech and America's Next Moonshot Moment

'Dwarf planet' is covered in crystal ice

Carbon monoxide detected around Pluto

The PI's Perspective: Pinch Me!

Later, Uranus: New Horizons Passes Another Planetary Milestone

Second Rocky World Makes Kepler-10 a Multi-Planet System

Kepler's Astounding Haul of Multiple-Planet Systems Just Keeps Growing

Bennett team discovers new class of extrasolar planets

Climate scientists reveal new candidate for first habitable exoplanet

U.K. spaceplane passes technical review

J-2X Test Series Proves Part Integrity

UMaine Students Test Wireless Sensors on Rocket

Next-generation US space racers outline plans

Venezuela, China to launch satellite next year

Top Chinese scientists honored with naming of minor planets

China sees smooth preparation for launch of unmanned module

China to attempt first space rendezvous

CU-Boulder to participate in NASA mission to land on an asteroid

ASU to build mineral survey instrument

NASA aims to grab asteroid time capsule

NASA Selects OSIRIS-REx as Next New Frontiers Mission

Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement