Subscribe to our free daily newsletters
  Space Travel News  

Subscribe to our free daily newsletters

A disappearing feast: Mean flows remain slim after eating eddies
by Staff Writers
Kyoto, Japan (SPX) Oct 28, 2016

Plasma physics experiment shows that the reduction in turbulence energy can't be explained by the increase in the mean flow energy, ruling out the predator-prey model in magnetic confinement fusion machines. Image courtesy Princeton Plasma Physics Laboratory. For a larger version of this image please go here.

Magnetic confinement fusion holds the promise of almost limitless amounts of energy, available on demand and producing zero carbon dioxide. But in order to harness that energy, we must trap plasma- an ionized gas- hotter than the center of the sun inside a donut-shaped magnetic facility called a tokamak that measures just a few yards across. As you might guess, the confined plasma becomes turbulent, and that turbulence leaks energy out from the ultra-hot core to the room-temperature wall.

But a slight increase in heating power can reduce the turbulence near the edge of the tokamak and cause the energy to leak much less. This new state of high confinement, known technically as "H-mode" and discovered in Germany in 1982, opened a promising new avenue towards the production of fusion energy.

Yet there is still no conclusive explanation for the disappearing turbulence. One popular contender, the "predator-prey" model, posits that the turbulence spontaneously dumps all of its energy into a benign spinning of the plasma called "mean flow" that does not transport heat.

According to this model, the spinning acts as a predator that feeds on eddies (prey) in the turbulence. If the predator is too successful, the population of eddies plummets and the mean flows (predators) grow accordingly. The predator-prey model suggests that the energy in the mean flows must increase by roughly the same amount that the energy in the turbulence drops. But does this really happen?

At the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), researchers have found that it does not. They used a gas puff imaging (GPI) diagnostic that let them directly see turbulent plasma fluctuations in the edge region of PPPL's National Spherical Torus Experiment (NSTX), the laboratory's flagship fusion facility, which has since been upgraded.

Pumping small amounts of neutral gas into the plasma caused the neutrals to interact with the plasma and glow. A fast camera recorded movies of that glow and revealed how the turbulence evolved in space and time.

Researchers were also able to infer the velocity of the plasma. This enabled evaluation of both the energy in the turbulent fluctuations and in the mean flows, providing a direct check on whether the evolution of these conditions satisfies the expectations of the predator-prey model.

Surprisingly, the answer was a resounding "no." By carefully evaluating the energy in the flows and turbulence, keeping all the important terms, they found that on NSTX the energy in the mean flows was never- even in H-mode- bigger than about 1 percent of the energy in the turbulence before the transition (Figure 1) to H-mode. This clearly showed that the reduction in turbulence energy couldn't be explained by the increase in the mean flow energy, ruling out the predator-prey model.

With this result, the mystery of the H-mode deepens again. However, by ruling out one explanation, the results from NSTX may refocus efforts on other contenders, raising the chances of identifying the physics behind the mysterious "H-mode" and facilitating the ability to employ it for the success of future fusion reactors.

Abstracts: GO6.00010 Energy Exchange Dynamics across L-H transitions in NSTX - NP10.00024 Parallel Electron Force Balance and the L-H Transition

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
American Physical Society
Powering The World in the 21st Century at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Launching fusion reactions without a central magnet, or solenoid
Washington DC (SPX) Oct 28, 2016
The tokamak is an experimental chamber that holds a gas of energetic charged particles, plasma, for developing energy production from nuclear fusion. Most large tokamaks create the plasma with solenoids - large magnetic coils that wind down the center of the vessels and inject the current that starts the plasma and completes the magnetic field that holds the superhot gas in place. But future tok ... read more

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

US-Russia Standoff Leaves NASA Without Manned Launch Capabilities

Swedish Space Corporation Celebrates 50th Anniversary of Esrange Space Center

Did it crash or land? Search on for Europe's Mars craft

Rover Conducting Science Investigations at 'Spirit Mount'

MAVEN mission observes ups and downs of water escape from Mars

A graveyard of broken dreams and landers

Russia plans to revive lunar rover moon exploration program

Small impacts are reworking the moon's soil faster than scientists thoug

2016 Ends with Three Supermoons

Spectacular Lunar Grazing Occultation of Bright Star on Oct. 18

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish

Curious tilt of the Sun traced to undiscovered planet

Shedding light on Pluto's glaciers

Tatooine worlds orbiting 2 suns often survive violent escapades of aging stars

Oldest known planet-forming disk found

ALMA spots possible formation site of icy giant planet

Astronomers find oldest known planetary disk

Boosting Europe's all-electric satellites

Guiding Supply Ship to the International Space Station

The Pressure is On for SLS Hardware in Upcoming Test

First launch for Orbital's Antares rocket since '14 blast

China to enhance space capabilities with launch of Shenzhou-11

Ambitious space satellite projects set for liftoff

China's permanent station plans ride on mission

China to enhance space capabilities with launch of Shenzhou-11

Astronomers Predict Birthplace of Rosetta's Comet

Unexpected discoveries on a metal world

Avalanches, Not Internal Pressure, Cause Comet Outbursts

Study suggests comet strike's link to age-old warming event

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement