Subscribe to our free daily newsletters
  Space Travel News  

Subscribe to our free daily newsletters

ALCF helps tackle the Large Hadron Collider's big data challenge
by Staff Writers
Lemont IL (SPX) Nov 09, 2015

File image.

Argonne physicists are using Mira to perform simulations of Large Hadron Collider (LHC) experiments with a leadership-class supercomputer for the first time, shedding light on a path forward for interpreting future LHC data. Researchers at the Argonne Leadership Computing Facility (ALCF) helped the team optimize their code for the supercomputer, which has enabled them to simulate billions of particle collisions faster than ever before.

At CERN's Large Hadron Collider (LHC), the world's most powerful particle accelerator, scientists initiate millions of particle collisions every second in their quest to understand the fundamental structure of matter.

With each collision producing about a megabyte of data, the facility, located on the border of France and Switzerland, generates a colossal amount of data. Even after filtering out about 99 percent of it, scientists are left with around 30 petabytes (or 30 million gigabytes) each year to analyze for a wide range of physics experiments, including studies on the Higgs boson and dark matter.

To help tackle the considerable challenge of interpreting all this data, researchers from the U.S. Department of Energy's (DOE's) Argonne National Laboratory are demonstrating the potential of simulating collision events with Mira, a 10-petaflops IBM Blue Gene/Q supercomputer at the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility.

"Simulating the collisions is critical to helping us understand the response of the particle detectors," said principal investigator Tom LeCompte, an Argonne physicist and the former physics coordinator for the LHC's ATLAS experiment, one of four particle detectors at the facility. "Differences between the simulated data and the experimental data can lead us to discover signs of new physics."

This marks the first time a leadership-class supercomputer has been used to perform massively parallel simulations of LHC collision events. The effort has been a great success thus far, showing that such supercomputers can help drive future discoveries at the LHC by accelerating the pace at which simulated data can be produced. The project also demonstrates how leadership computing resources can be used to inform and facilitate other data-intensive high energy physics experiments.

Since 2002, LHC scientists have relied on the Worldwide LHC Computing Grid for all their data processing and simulation needs. Linking thousands of computers and storage systems across 41 countries, this international distributed computing infrastructure allows data to be accessed and analyzed in near real-time by an international community of more than 8,000 physicists collaborating among the four major LHC experiments.

"Grid computing has been very successful for LHC, but there are some limitations on the horizon," LeCompte said. "One is that some LHC event simulations are so complex that it would take weeks to complete them. Another is that the LHC's computing needs are set to grow by at least a factor of 10 in the next several years."

To investigate the use of supercomputers as a possible tool for the LHC, LeCompte applied for and received computing time at the ALCF through DOE's Advanced Scientific Computing Research Leadership Computing Challenge. His project is focused on simulating ATLAS events that are difficult to simulate with the computing grid.

While the LHC's big data challenge seems like a natural fit for one of the fastest supercomputers in the world, it took extensive work to adapt an existing LHC simulation method for Mira's massively parallel architecture.

With help from ALCF researchers Tom Uram, Hal Finkel, and Venkat Vishwanath, the Argonne team transformed ALPGEN, a Monte Carlo-based application that generates events in hadronic collisions, from a single-threaded simulation code into massively multi-threaded code that could run efficiently on Mira.

By improving the code's I/O performance and reducing its memory usage, they were able to scale ALPGEN to run on the full Mira system and help the code perform 23 times faster than it initially did. The code optimization work has enabled the team to routinely simulate millions of LHC collision events in parallel.

"By running these jobs on Mira, they completed two years' worth of ALPGEN simulations in a matter of weeks, and the LHC computing grid became correspondingly free to run other jobs," Uram said.

Throughout the course of the project, the team's simulations have equated to about 9 percent of the annual computing done by the ATLAS experiment. Ultimately, this effort is helping to accelerate the science that depends on these simulations.

"The datasets we've generated are important, and we would have made them anyway, but now we have them in our hands about a year and a half sooner," LeCompte said. "That, in turn, will help us get more results to conferences and publications at an earlier time."

As supercomputers like Mira get better integrated into the LHC's workflow, LeCompte believes a much larger fraction of simulations could eventually be shifted to high-performance computers.

To help move the LHC in that direction, his team plans to increase the range of codes capable of running on Mira, with the next candidates being Sherpa, another event generation code, and Geant4, a code for simulating the passage of particles through matter.

"We also plan to help other high energy physics groups use leadership supercomputers like Mira," LeCompte said. "Our experience is that it takes a year or so to get to the minimum partition size, and another year to run at scale."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Argonne National Laboratory
Understanding Time and Space

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
China to start work on turbo-charged super-collider by 2020: report
Beijing (AFP) Oct 29, 2015
China will begin work on the world's largest super-collider in 2020, a mega-machine aimed at increasing understanding of the elusive Higgs boson, state-run media reported Thursday. The facility, designed to smash subatomic particles together at enormous speed, will reportedly be at least twice the size of Europe's physics lab, the Swiss-based CERN, where the Higgs boson was discovered. ... read more

Commercial Spaceflight Gets A Boost With Latest Congressional Moves

The 10th Arianespace mission of 2015 is "go" for its Ariane 5 liftoff next week

USAF releases first Booster Propulsion Technology Maturation BAA Award

SpaceLoft demonstrates capability to eject separate payloads requiring independent re-entry

Amnesia Event Slows Down Opportunity Robotic Arm Work

Swiss Camera Leaves for Mars

NASA mission reveals speed of solar wind stripping Martian atmosphere

Martian desiccation

Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

New Horizons Yields Wealth of Discovery from Pluto Flyby

Ammonia-Water Slurry May Swirl Below Pluto's Icy Surface

New Horizons Completes Targeting Maneuvers

The Youngest Crater on Charon

Distant world's weather is mixed bag of hot dust and molten rain

Disk gaps don't always signal planets

Finding New Worlds with a Play of Light and Shadow

Did Jupiter Expel A Rival Gas Giant

BAE and Reaction Engines to develop a new aerospace engine

Rocket Lab selects Alaska Aerospace for electron launch range safety

Antares rocket engine failure causes

Antares rocket explosion revealed in fiery new NASA photos

China's self-developed Mars probe to be on show

Could Sino-U.S. cooperation bring the Martian home?

China's scientific satellites to enter uncharted territory

Declaration approved to promote Asia Pacific space cooperation

One year after comet touchdown, what's next for Philae?

Chances 'fair' for Philae contact: ground controllers

Radar Images Provide New Details on Halloween Asteroid

Halloween asteroid gives us a miss, confirms ESA

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement