Subscribe to our free daily newsletters
  Space Travel News  




Subscribe to our free daily newsletters



SHAKE AND BLOW
2014 Napa earthquake continued to creep, weeks after main shock
by Staff Writers
Boston MA (SPX) Aug 22, 2016


illustration only

Nearly two years ago, on August 24, 2014, just south of Napa, California, a fault in the Earth suddenly slipped, violently shifting and splitting huge blocks of solid rock, 6 miles below the surface. The underground upheaval generated severe shaking at the surface, lasting 10 to 20 seconds. When the shaking subsided, the magnitude 6.0 earthquake - the largest in the San Francisco Bay Area since 1989 - left in its wake crumpled building facades, ruptured water mains, and fractured roadways.

But the earthquake wasn't quite done. In a new report, scientists from MIT and elsewhere detail how, even after the earthquake's main tremors and aftershocks died down, earth beneath the surface was still actively shifting and creeping - albeit much more slowly - for at least four weeks after the main event. This postquake activity, which is known to geologists as "afterslip," caused certain sections of the main fault to shift by as much as 40 centimeters in the month following the main earthquake.

This seismic creep, the scientists say, may have posed additional infrastructure hazards to the region and changed the seismic picture of surrounding faults, easing stress along some faults while increasing pressure along others.

The scientists, led by Michael Floyd, a research scientist in MIT's Department of Earth, Atmospheric and Planetary Sciences, found that sections of the main West Napa Fault continued to slip after the primary earthquake, depending on the lithology, or rock type, surrounding the fault. The fault tended to only shift during the main earthquake in places where it ran through solid rock, such as mountains and hills; in places with looser sediments, like mud and sand, the fault continued to slowly creep, for at least four weeks, at a rate of a few centimeters per day.

"We found that after the earthquake, there was a lot of slip that happened at the surface," Floyd says. "One of the most fascinating things about this phenomenon is it shows you how much hazard remains after the shaking has stopped. If you have infrastructure running across these faults - water pipelines, gas lines, roads, underground electric cables - and if there's this significant afterslip, those kinds of things could be damaged even after the shaking has stopped."

Floyd and his colleagues, including researchers from the University of California at Riverside, the U.S. Geological Survey, the University of Leeds, Durham University, Oxford University, and elsewhere, have published their results in the journal Geophysical Research Letters.

Right time, right place
Floyd and co-author Gareth Funning, of UC Riverside, have been studying fault motions in northern California for the past seven years. When the earthquake struck, at about 3:20 a.m. local time, they just happened to be stationed 75 miles north of the epicenter.

"At the time, I did stir, thinking, 'C'mon, go back to sleep!'" Floyd says. "When we woke up, we turned on the news, figured out what happened, and immediately got back in our cars, picked up the instruments we had in the field, drove down the freeway to American Canyon, and started to put out instruments at sites we had measured just a few weeks before."

Those instruments made up a network of about a dozen GPS receivers, which the team placed on either side of the fault line, as close to the earthquake's epicenter as they could. They left most of the instruments out in the field, where they recorded data every 30 seconds, continuously, for three weeks, to observe the distance the ground moved.

"The key difference between this study and other studies of this earthquake is that we had the additional GPS data very close to the epicenter, whereas other groups have only been able to access data from sites farther away," Floyd says. "We even had one point that was 750 meters from the surface rupture."

Creeping faults, silent shadows
The team combined its GPS data with satellite measurements of the region to reconstruct the ground movements along the fault and near the epicenter in the weeks following the main earthquake. They found that the fault continued to slip - one side of the fault sliding past the other, like sandpaper across wood - at a steady rate of several centimeters per day, for at least four weeks.

"The widespread and rapid afterslip along the West Napa Fault posed an infrastructure hazard in its own right," the authors write in the paper. "Repeated repairs of major roads crosscut by the rupture were required, and in some areas, water pipes that survived the [main earthquake] were subsequently broken by the afterslip."

The earthquake and the afterslip took many scientists by surprise, as seismic data from the area showed no signs of movement along the fault prior to the main shock.

Regarding the afterslip's possible effects on surrounding faults, the researchers found that it likely redistributed the stresses in the region, lessening the pressure on some faults. However, the researchers note that the afterslip may have put more stress on one particular region near the Rodgers Creek Fault, which runs through the city of Santa Rosa.

"Right now, we don't think there's any significantly heightened risk of quakes happening on other nearby faults, although the risk always exists," Floyd says.

Curiously, the scientists identified a large region beneath the West Napa Fault, just northwest of Napa, which they've dubbed the "slip and aftershock shadow" - a zone that was strangely devoid of any motion during both the earthquake and afterslip. Floyd says this shadow may indicate a buildup in seismic pressure.

"The fact that nothing happened there is almost more cause for concern for us than where things actually happened," Floyd says. "It would produce a fairly small quake if that area was to rupture, but there's just no knowing if it would continue on to start something more."

Floyd says that in developing seismic hazard assessments, it's important to consider afterslip and slowly creeping faults, which occur often and over long periods of time following the more obvious earthquake.

"There are some earthquakes where we think we might be seeing some activity even 15 years after the main quake," Floyd says. "So the more examples of an earthquake happening followed by afterslip that we can study, the better we can understand the entire process."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Massachusetts Institute of Technology
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SHAKE AND BLOW
Earthquake in Peru kills at least nine: officials
Lima (AFP) Aug 15, 2016
A moderate 5.2-magnitude earthquake in Peru killed at least nine people including a US tourist and left 52 injured, crushing villagers under rubble and blocking roads, officials said Monday. The quake knocked down about 50 homes and cut off roads and power in the southern Arequipa region. The governor of Arequipa, Yamila Osorio, said on the radio that three people were reported killed in ... read more


SHAKE AND BLOW
Preparations for Arianespace's upcoming Ariane 5 flight move into their final phase at the Spaceport

Launch of US Antares Rocket Powered by Russian Engine Postponed

Russia to Launch Angara-1.2 Rocket With Korean Satellite KOMPSAT-6 in 2020

NASA Orders Second SpaceX Crew Mission to International Space Station

SHAKE AND BLOW
Limited power as Mar Lab approaches Murray Buttes

Opportunity going back for closer look at grooves seen in images

Mineral Veins on Mars Were Formed by Evaporating Ancient Lakes

Evidence of Martian life could be hard to find in some meteorite blast sites

SHAKE AND BLOW
Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

US company gets historic nod to send lander to moon

China's Jade Rabbit lunar rover dies in blaze of online glory

SHAKE AND BLOW
Pluto Flyby - A Year Later

Scientists attempt to explain Neptune atmosphere's wobble

New Distant Dwarf Planet Beyond Neptune

Researchers discover distant dwarf planet beyond Neptune

SHAKE AND BLOW
Scientists to unveil new Earth-like planet: report

Astronomers catalogs most likely 'second-Earth' candidates

Alien Solar System Boasts Tightly Spaced Planets, Unusual Orbits

NASA's Next Planet Hunter Will Look Closer to Home

SHAKE AND BLOW
Orbital ATK and NASA report outcomes from Qualification Motor QM-2 test

Mechanisms are Critical to Space Vehicle Flight Success

Watch a tiny space rocket work

Progress is Heard as RS-25 Engine Roars to Life for NASA's Space Launch System

SHAKE AND BLOW
China launches first mobile telecom satellite

China prepares for new round of manned space missions

China begins developing hybrid spacecraft

China to expand int'l astronauts exchange

SHAKE AND BLOW
NASA to map Asteroid Bennu from the ground up

The First Commercial Interplanetary Mining Mission

What's Inside Ceres? New Findings from Gravity Data

Farewell Philae: Earth severs link with silent comet probe




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement