Subscribe free to our newsletters via your
. Space Travel News .




TIME AND SPACE
A novel approach for high performance field emission electron sources
by Staff Writers
Quebec, Canada (SPX) Feb 19, 2015


Illustration only.

Enhancing the electron emission of multiwall carbon nanotubes (MWCNT) is key for applications ranging from cold cathodes used in high-resolution electron microscopes to portable X-ray imaging systems.

In a paper recently published in Nanotechnology, a team led by Professor My Ali El Khakani, from the Energie Materiaux Telecommunications Research Centre of INRS (INRS-EMT), has reported an original approach for the development of novel graphenated-MWCNTs with enhanced field electron emission (FEE) properties.

The tips of these MWCNTs are made of deployed graphene sheets. By appropriately decorating those graphene sheets with gold nanoparticles, the INRS-EMT team was able to increase significantly the density of electron-emitting sites, and thereby improve their FEE performance. A transmission electron microscopy (TEM) image of these impressive nanohybrid FEE structures was chosen by the journal editor to be featured on the cover page of the Nanotechnolgy journal (Vol. 26, No. 4).

The MWCNTs are excellent field electron emitters due to their stability and electronic conduction at room temperature, but there is still challenges to maximize their emission current at the lowest applied electric field possible. In this context, the two-step growth process developed by INRS researchers was demonstrated to enhance effectively the FEE performance of these new cold electron emitting cathodes.

The team used a plasma-enhanced chemical vapour deposition (PECVD) process to grow the carbon nanotubes, while optimizing the plasma growth conditions to produce MWCNTs with tips made of deployed graphene sheets.

In a second step, by capitalizing on their expertise in the field of laser ablation, they decorated these graphenated-MWCNT (g-MWCNT) structures with 2-3 nm-diameter gold nanoparticles (Au-NP). The new nanohybrid structures (g-MWCNT/Au-NP) have a significantly higher density of electron-emitting sites, which greatly enhances the field electron emission.

"The unique electronic structure of graphene along with its particular surface topography make it an ideal substrate for decoration with gold nanoparticles. Those Au-NP contribute positively to the FEE process through the enhancement of the local electron field, which in turn maximizes the electron emission from these g-MWCNT/Au-NP nanohybrid," explains Professor El Khakani.

The development of these new nanohybrid emitters opens new prospects for their application as cold cathodes in portable, low voltage, highly brilliant electron sources.

The highlights of this research have been posted on the blog Lab Talk.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Institut national de la recherche scientifique (INRS)
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Switching superconductivity by light
Tokyo, Japan (SPX) Feb 13, 2015
A research team led by Prof. Hiroshi M. Yamamoto of the Institute for Molecular Science, National Institutes of Natural Sciences has developed a novel superconducting transistor which can be switched reversibly between ON and OFF by light-irradiation. This achievement is a milestone for future high-speed switching devices or highly-sensitive optical sensors. The field-effect transistor (FE ... read more


TIME AND SPACE
Soyuz Installed at Baikonur, Expected to Launch Wednesday

SpaceX launches deep-space weather observatory

SpaceX cargo craft returns to Earth

High seas force SpaceX to ditch bid to recycle rocket

TIME AND SPACE
NASA's Curiosity Analyzing Sample of Martian Mountain

Mars Rover Nearing Marathon Achievement

NASA's Curiosity Analyzing Sample of Martian Mountain

NASA Spacecraft Completes 40,000 Mars Orbits

TIME AND SPACE
NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

Service Module of Chinese Probe Enters Lunar Orbit

TIME AND SPACE
New Horizons snaps new images of Pluto en route to historic flyby

Something Special in the Air

NASA craft set to beam home close-ups of Pluto

New Horizons ready for planet's beyond beyond

TIME AND SPACE
Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

Dawn ahead!

Habitable Evaporated Cores

TIME AND SPACE
China tests new carrier rocket's power system

ESA experimental spaceplane completes research flight

Eruptions Evicted: Anti-geyser Testing Completed for SLS Liquid Oxygen Tank

Europe tests space plane in step to strategic goal

TIME AND SPACE
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

TIME AND SPACE
Why Comets Are Like Deep Fried Ice Cream

Rosetta photos: Comet's material becoming more volatile as it nears sun

Number of Known Accessible Near-Earth Asteroids Doubles Since 2010

Dawn Gets Closer Views of Ceres




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.