Subscribe free to our newsletters via your
. Space Travel News .




UAV NEWS
A new trophallactic strategy for multiple unmanned aerial vehicles flying in formation
by Staff Writers
Haibin, China (SPX) Jun 25, 2013


This shows five UAVs merging into a V-formation while following a virtual leader. Credit: Science China Press.

The autonomous flying of multiple UAVs in formation is an important research area in the aerospace field. Professor DUAN Haibin and his group members (LUO Qinan and YU Yaxiang) from the Science and Technology in Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University set out to tackle this problem.

Through 5 years of innovative research, they investigated the trophallactic mechanism behind social insects and developed a novel trophallaxis network control method for formation flight.

They transferred the trophallaxis scenario to the context of a multi-UAV flight scenario and successfully tested and evaluated a new control strategy. Their work, entitled "Trophallaxis network control approach to formation flight of multiple unmanned aerial vehicles", was published in SCIENCE CHINA Technological Sciences, 2013, Vol. 56(5).

In recent years, formation control of multiple UAVs has become a challenging interdisciplinary research topic, while autonomous formation flight is an important research area in the aerospace field. The main motivation is the wide range of possible military and civilian applications, where UAV formations could provide a low cost and efficient alternative to existing technology.

Researchers and clinicians have developed many methods to address the formation problem. Despite all efforts, currently available formation control methods ignore network effects.

The UAV group would perform their flight missions according to an existing database received by the navigation system and various sensors. Therefore, the stability of a UAV group is usually affected by the network characteristics, and there is an urgent need for network control strategies with better efficacy.

Trophallactic is a new swarm search algorithm. This new mechanism is based on the trophallactic behavior of social insects, animals and birds, such as ants, bees, wasps, sheep, dogs, sparrows and swallows.

Trophallaxis is the exchange of fluid by direct mouth-to-mouth contact. Animal studies revealed that trophallaxis can reinforce the exchange and sharing of information between individual animals. By imitating that behavior and considering the communication requirements of the network control system, a network control method was proposed. The method was derived from the following example.

A honeybee that finds the feeder fills its nectar crop with the offered sugar solution, and if the bee meets another bee on its way, there can be trophallactic contact. The higher the metabolic rate of the bee is, the higher this consumption rate will be. The attractive aspect of the trophallaxis mechanism is the ability to incorporate information transfer as a biological process and use global information to generate an optimal control sequence at each time step.

The virtual leader is employed in the formation flight model, and two trophallaxis strategies-the empty call and donation mechanisms-were considered to implement information transfer.

In the process of formation, all UAVs, including the virtual leader, have the ability to conduct trophallaxis. The virtual leader sends updated task information and other UAVs update task information during their sampling period through the trophallaxis network.

In the trophallaxis network control system, each UAV obtains a control sequence based on the task commands and its own state, and transfers underlying information to the trophallaxis network (as shown in the figure).

In the trophallaxis network environment, communication lines are shared and information flow changes irregularly, and network analysis becomes very complicated owing to the existence of time delay. The analysis of the network performance is easily achieved by dividing time delays into sensor-controller delay and controller-actuator delay.

This research project was supported in part by a grant from the National Natural Science Foundation of China. It is an important breakthrough in the recent history of formation flight.

The researchers suggest that their work needs to be put into practice and examined in the formation control field and that the trophallactic mechanisms of social insects should be further studied. These efforts will have significant impact on the formation control of various (marine, ground, aeronautical, and astronautical) vehicle systems.

Duan H B, Luo Q N, Yu Y X. Trophallaxis network control approach to formation flight of multiple unmanned aerial vehicles. Sci China Tech Sci, 2013, Vol. 56 (5): 1066.

.


Related Links
DUAN Haibin
UAV News - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





UAV NEWS
Raytheon delivers mini transponders for Identification Friend or Foe on Korean Air UAV
Paris, France (SPX) Jun 24, 2013
Raytheon has completed deliveries of its miniature military-grade Identification Friend or Foe (IFF) transponders to Korean Air Lines as the Republic of Korea's top air carrier develops unmanned aerial vehicles (UAVs). The small transponders are designed to fly on UAVs and smaller helicopters and deliver all of the military and civilian airspace performance capabilities of Raytheon's indus ... read more


UAV NEWS
New Mexico Space Grant Consortium student experiments blast into space from Spaceport America

Arianespace Soyuz Puts Four O3b Networks' Birds Into Orbit

Four O3b Network birds integrated to Arianespace Soyuz launcher

Arianespace will retain its market leadership by building on the company's flexibility and agility

UAV NEWS
Mars had oxygen-rich atmosphere 4,000 million years ago

Billion-Pixel View of Mars Comes From Curiosity Rover

Study: Mars may have had ancient oxygen-rich atmosphere

Opportunity Recovers From Another Flash-Related Reset

UAV NEWS
Metamorphosis of Moon's Water Ice Explained

Scientists use gravity, topographic data to find unmapped moon craters

Australian team maps Moon's hidden craters

LADEE Arrives at Wallops for Moon Mission

UAV NEWS
New Horizons Team Sticking to Original Flight Plan at Pluto

Planning Accelerates For Pluto Encounter

'Vulcan' wins Pluto moon name vote

Public to vote on names for Pluto moons

UAV NEWS
Retirement for planet-hunting space probe

Trio of 'super Earths' in a star's habitable zone

Study finds planets in habitable zone around a distant star

NASA's Hubble Uncovers Evidence of Farthest Planet Forming From its Star

UAV NEWS
Aerojet Rocketdyne Completes First Set Of Full-Motion Tests On SLS Engine

Space Launch System Program Kicks Off Preliminary Design Review

Russia to Unveil New Piloted Spacecraft at MAKS Airshow

Students and Teachers Become Rocket Scientists at NASA's Wallops Flight Facility

UAV NEWS
China's Shenzhou-10 spacecraft returns to Earth

Xi vows bigger stride in space exploration

Chinese astronauts manually dock spacecraft

China astronaut teaches lesson from space

UAV NEWS
NASA enlists public in hunt for major asteroids

NASA Announces Asteroid Grand Challenge

Chile observatory discovers 'comet factory'

Radar Movies Highlight Asteroid 1998 QE2 and Its Moon




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement