. Space Travel News .




.
EARLY EARTH
A new theory on the formation of the oldest continents
by Staff Writers
Bonn, Germany (SPX) Mar 14, 2012

File image.

The earth's structure can be compared to an orange: its crust is the peel supported by the earth's heavy mantle. That peel is made up of a continental crust 30 to 40 kilometers thick. It is much lighter than the thinner oceanic crust and protrudes from the earth's mantle because of its lower density, like an iceberg in the sea.

"According to the current theory, the first continental crusts were formed when tectonic plates would collide, submerging oceanic crusts into the earth's mantle, where they would partially melt at a depth of approximately 100 kilometers. That molten rock then ascended to the earth's surface and formed the first continents," says adjunct professor Dr. Thorsten Nagel of the Steinmann Institute of Geosciences at the University of Bonn, lead author of the study. The theory has been supported by the oldest known continental rocks - approximately 3.8 billion years old - found in western Greenland.

Following trace elements
The composition of the continental crust corresponds to a semiliquid version of the oceanic crust melted by 10 to 30 percent of its original state. Unfortunately, the concentrations of the main chemical components in the re-solidified rock do not provide much information about what depth the fusion occurred at.

"In order to find that out, you have to know what minerals the remaining 70 to 90 percent of the oceanic crust consisted of," explains Prof. Dr. Carsten Munker of the Institute of Geology and Mineralogy at the University of Cologne. Researchers from Bonn and Cologne have now analyzed the Greenlandic rocks for different elements occurring at various high concentrations, also know as trace elements.

"Trace elements provide geologists with a window to the origin of continental crust," says Prof. Munker. "With their help, we can identify minerals in the residual rock that were deposited in the depths by the molten rock."

Before the magma separated from the bedrock, the semifluid rock and the leftover solid minerals actively exchanged trace elements.

"Different minerals have characteristic ways of separating when trace elements are smelted. In other words, the concentration of trace elements in the molten rock provide a fingerprint of the residual bedrock," explains Dr. Elis Hoffmann from Bonn, coauthor of the study. The concentration of trace elements in the oldest continental rock allows geoscientists to reconstruct possible bedrock based on their minerals and thus determine at what depth the continental crust originated.

The oceanic crust did not have to descend
Using computers, the scientists simulated the composition of bedrock and molten rock that would emerge from partially melting the oceanic crust at various depths and temperatures.

They then compared the data calculated for the molten rock with the actual concentration of trace elements in the oldest continental rocks. "Our results paint a surprising picture," Dr. Nagel reports. "The oceanic crust did not have to descend to a depth of 100 kilometers to create the molten rock that makes up the rocks of the first continents." According to the calculations, a depth of 30 to 40 kilometers is much more probable.

The primeval oceanic crust could have 'oozed' continents

...it could definitely have had the power to do so in the Archean eon. Four billion years ago, the gradually cooling earth was still significantly warmer than it is today. The oceanic crust could have simply 'oozed' continents at the same time that other geological processes were occurring, like volcanism, orogeny, and the influx of water.

"We think it is unlikely that the contents were formed into subduction zones. Whether or not tectonic plates of the primordial earth had such zones of subsidence is still a matter of debate," says the geologist from Bonn.

Related Links
University of Bonn
Explore The Early Earth at TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries



And it's 3... 2... 1... blastoff! Discover the thrill of a real-life rocket launch.



.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



EARLY EARTH
Scientists document first consumption of abundant life form, Archaea
Corvallis, OR (SPX) Mar 13, 2012
A team of scientists has documented for the first time that animals can and do consume Archaea - a type of single-celled microorganism thought to be among the most abundant life forms on Earth. Archaea that consume the greenhouse gas methane were in turn eaten by worms living at deep-sea cold seeps off Costa Rica and the West Coast of the United States. Archaea perform many key ecosystem s ... read more


EARLY EARTH
Europe's Arianespace inks new deals at US conference

ILS Announces A New Contract For The ILS Proton Launch Of The Mexsat-1 Satellite

Launch Madness at Wallops in March - "Five in Five"

Engineers Tuck NuSTAR in its Nose Cone

EARLY EARTH
Rep. Schiff Applauds Decision to Reject NASA Request to Divert Mars Funds

Winter Studies of 'Amboy' Rock Continue

NASA Mars Orbiter Catches Twister in Action

Working models for the gravitational field of Phobos

EARLY EARTH
Russia sets sights on Moon, Mars and beyond: report

Apollo 11: 'A Stark Beauty All Its Own'

Magnetic moon

Twin GRAIL Spacecraft Begin Collecting Lunar Science Data

EARLY EARTH
New Horizons on Approach: 22 AU Down, Just 10 to Go

EARLY EARTH
Stars with Dusty Disks Should Harbor Earth-like Worlds

Star Comb joins quest for Earth-like planets

Researchers say galaxy may swarm with 'nomad planets'

New model provides different take on planetary accretion

EARLY EARTH
Latest Hot Fire Test on Launch Abort Engine for Boeing CST 100 Spacecraft Completed

What Next for X-37B

XCOR Aerospace Closes $5 Million Round of Investment Capital

XCOR Announces New Lynx Vehicle Payload Integrators

EARLY EARTH
Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

China hopes to send Long March-5 rocket into space in 2014

EARLY EARTH
Dear Ups and Dawns

Asteroid 2011 AG5 - A Reality Check

Scientists say big asteroid bears watching


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement