Subscribe to our free daily newsletters
  Space Travel News  




Subscribe to our free daily newsletters



CHIP TECH
A new spin on electronics
by Staff Writers
Salt Lake City UT (SPX) May 30, 2017


Sarah Li (left) and Z. Valy Vardeny (right) of the Department of Physics and Astronomy at the University of Utah discuss the ultrafast laser used to prepare and measure the direction of the electron spin of hybrid perovskite methyl-ammonium lead iodine (CH3NH3PbI3). They are the first to show that organic-inorganic hybrid perovskites are a promising material class for spintronics, an emerging field that uses the spin of the electron to carry information, rather than the electronic charge used in traditional electronics. Image courtesy University of Utah.

A University of Utah-led team has discovered that a class of "miracle materials" called organic-inorganic hybrid perovskites could be a game changer for future spintronic devices. Spintronics uses the direction of the electron spin - either up or down - to carry information in ones and zeros. A spintronic device can process exponentially more data than traditional electronics that use the ebb and flow of electrical current to generate digital instructions. But physicists have struggled to make spintronic devices a reality.

The new study, published online in Nature Physics, is the first to show that organic-inorganic hybrid perovskites are a promising material class for spintronics. The researchers discovered that the perovskites possess two contradictory properties necessary to make spintronic devices work - the electrons' spin can be easily controlled, and can also maintain the spin direction long enough to transport information, a property known as spin lifetime.

"It's a device that people always wanted to make, but there are big challenges in finding a material that can be manipulated and, at the same time, have a long spin lifetime," says Sarah Li, assistant professor in the Department of Physics and Astronomy at the U and lead author of the study. "But for this material, it's the property of the material itself that satisfies both."

The miracle material
Organic-inorganic hybrid perovskites is already famous in scientific circles for being amazingly efficient at converting sunlight into electricity. "It's unbelievable. A miracle material," says Z. Valy Vardeny, distinguished professor in the Department of Physics and Astronomy and co-author of the study, whose lab studies perovskite solar cells. "In just a few years, solar cells based on this material are at 22 percent efficiency. And now it has this spin lifetime property. It's fantastic."

The material's chemical composition is an unlikely candidate for spintronics, however. The hybrid perovskite inorganic frame is made of heavy elements. The heavier the atom, the easier it is to manipulate the electron spin. That's good for spintronics. But other forces also influence the spin. When the atoms are heavy, you assume the spin lifetime is short, explains Li. "Most people in the field would not think that this material has a long spin lifetime. It's surprising to us, too," says Li. "We haven't found out the exact reason yet. But it's likely some intrinsic, magical property of the material itself."

Spintronics: That magnetic moment when...
Cellphones, computers and other electronics have silicon transistors that control the flow of electrical currents like tiny dams. As devices get more compact, transistors must handle the electrical current in smaller and smaller areas.

"The silicon technology, based only on the electron charge, is reaching its size-limit," says Li, "The size of the wire is already small. If gets any smaller, it's not going to work in a classical way that you think of."

"People were thinking, 'How do we increase the amount of information in such a small area?'" adds Vardeny. "What do we do to overcome this limit?"

"Spintronics," answers physics.
Spintronics uses the spin of the electron itself to carry information. Electrons are basically tiny magnets orbiting the nucleus of an element. Just like the Earth has its own orientation relative to the sun, electrons have their own spin orientation relative to the nucleus that can be aligned in two directions: "Up," which represents a one, and "down," which represents a zero. Physicists relate the electron's "magnetic moment" to its spin.

By adding spin to traditional electronics, you can process exponentially more information than using them classically based on less or more charge.

"With spintronics, not only have you enormously more information, but you're not limited by the size of the transistor. The limit in size will be the size of the magnetic moment that you can detect, which is much smaller than the size of the transistor nowadays," says Vardeny.

The experiment to tune electron spin
Tuning an electron spin is like tuning a guitar, but with a laser and a lot of mirrors.

First, the researchers formed a thin film from the hybrid perovskite methyl-ammonium lead iodine (CH3NH3PbI3) and placed it in front of an ultrafast laser that shoots very short light pulses 80 million times a second. The researchers are the first to use light to set the electron's spin orientation and observe the spin precession in this material.

They split the laser into two beams; the first one hit the film to set the electron spin in the desired direction. The second beam bends through a series of mirrors like a pinball machine before hitting the perovskite film at increasing time intervals to measure how long the electron held the spin in the prepared direction.

They found that the perovskite has a surprisingly long spin lifetime - up to nanosecond. The spin flips many times during one nanosecond, which means a lot information can be easily stored and manipulated during that time.

Once they determined the long spin lifetime, the researchers tested how well they could manipulate the spin with a magnetic field.

"The spin is like the compass. The compass spins in this magnetic field perpendicular to that compass, and eventually it will stop spinning," says Li. "Say you set the spin to 'up,' and you call that 'one.' When you expose it to the magnetic field, the spin changes direction. If it rotated 180 degrees, it changes from one to zero. If it rotated 360 degrees, it goes from one to one."

They found that they could rotate the spin more than 10 turns by exposing the electron to different strengths of magnetic field.

The potential for this material is enormous, says Vardeny. It could process data faster and increase random-access memory.

"I'm telling you, it's a miracle material," says Vardeny.

Research Report

CHIP TECH
Wafer-thin magnetic materials developed for future quantum technologies
Basel, Switzerland (SPX) May 30, 2017
Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboa ... read more

Related Links
University of Utah
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
CHIP TECH
Halos discovered on Mars widen time frame for potential life

Student-Made Mars Rover Concepts Lift Off

Illinois Company Among Hundreds Supporting NASA Mission to Mars

Preparations Continue Before Driving into 'Perseverance Valley'

CHIP TECH
Cube Quest Challenge Team Spotlight: Cislunar Explorers

Winning plans for CubeSats to the Moon

Printing bricks from moondust using the Sun's heat

NASA selects ASU's ShadowCam for moon mission

CHIP TECH
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter

CHIP TECH
Viable Spores, DNA Fragments Discovery at ISS Justifies Biosphere's Expansion

Russia thinks microorganisms may be living outside the space station

The race to trace TRAPPIST-1h

Giant Ringed Planet Likely Cause of Mysterious Eclipses

CHIP TECH
Colossal rocket-launching plane rolls toward testing

SpaceX poised for Thursday cargo launch to space station

Dream Chaser Spacecraft Passes Major Milestone

Dragon Spacecraft Prepared to Resupply International Space Station

CHIP TECH
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

CHIP TECH
'Tiny clocks' crystallize understanding of meteorite crashes

NASA Moves Up Launch of Psyche Mission to a Metal Asteroid

Movie Shows Ceres at Opposition from Sun

Twisting an Asteroid




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement