Subscribe free to our newsletters via your
. Space Travel News .




SHAKE AND BLOW
A new level of earthquake understanding
by Staff Writers
Berkeley CA (SPX) Mar 05, 2015


Using ALS beamline 12.3.2, researchers carried out an X-ray microdiffraction study on quartz grains from the San Andreas Fault Observatory at Depth and found a heterogeneous distribution of stress. Image courtesy of Berkeley Lab. For a larger version of this image please go here.

As everyone who lives in the San Francisco Bay Area knows, the Earth moves under our feet. But what about the stresses that cause earthquakes? How much is known about them? Until now, our understanding of these stresses has been based on macroscopic approximations.

Now, the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) is reporting the successful study of stress fields along the San Andreas fault at the microscopic scale, the scale at which earthquake-triggering stresses originate.

Working with a powerful microfocused X-ray beam at Berkeley Lab's Advanced Light Source (ALS), a DOE Office of Science User Facility, researchers applied Laue X-ray microdiffraction, a technique commonly used to map stresses in electronic chips and other microscopic materials, to study a rock sample extracted from the San Andreas Fault Observatory at Depth (SAFOD). The results could one day lead to a better understanding of earthquake events.

"Stresses released during an earthquake are related to the strength of rocks and thus in turn to the rupture mechanism," says Martin Kunz, a beamline scientist with the ALS's Experimental Systems Group.

"We found that the distribution of stresses in our sample were very heterogeneous at the micron scale and much higher than what has been reported with macroscopic approximations. This suggests there are different processes at work at the microscopic and macroscopic scales."

Kunz is one of the co-authors of a paper describing this research in the journal Geology. The paper is titled "Residual stress preserved in quartz from the San Andreas Fault Observatory at Depth." Co-authors are Kai Chen, Nobumichi Tamura and Hans-Rudolf Wenk.

Most earthquakes occur when stress that builds up in rocks along active faults, such as the San Andreas, is suddenly released, sending out seismic waves that make the ground shake. The pent- up stress results from the friction caused by tectonic forces that push two plates of rock against one another.

"In an effort to better understand earthquake mechanisms, several deep drilling projects have been undertaken to retrieve material from seismically active zones of major faults such as SAFOD," says co-author Wenk, a geology professor with the University of California (UC) Berkeley's Department of Earth and Planetary Science and the leading scientist of this study.

"These drill-core samples can be studied in the laboratory for direct information about physical and chemical processes that occur at depth within a seismically active zone. The data can then be compared with information about seismicity to advance our understanding of the mechanisms of brittle failure in the Earth's crust from microscopic to macroscopic scales."

Kunz, Wenk and their colleagues measured remnant or "fossilized" stress fields in fractured quartz crystals from a sample taken out of a borehole in the San Andreas Fault near Parkfield, California at a depth of 2.7 kilometers.

The measurements were made using X-ray Laue microdiffraction, a technique that can determine elastic deformation with a high degree of accuracy. Since minerals get deformed by the tectonic forces that act on them during earthquakes, measuring elastic deformation reveals how much stress acted on the minerals during the quake.

"Laue microdiffraction has been around for quite some time and has been exploited by the materials science community to quantify elastic and plastic deformation in metals and ceramics, but has been so far only scarcely applied to geological samples", says co-author Tamura, a staff scientist with the ALS's Experimental Systems Group who spearheads the Laue diffraction program at the ALS.

The measurements were obtained at ALS beamline 12.3.2, a hard (high-energy) X-ray diffraction beamline specialized for Laue X-ray microdiffraction.

"ALS Beamline 12.3.2 is one of just a few synchrotron-based X-ray beamlines in the world that can be used to measure residual stresses using Laue micro diffraction," Tamura says.

In their analysis, the Berkeley researchers found that while some of the areas within individual quartz fragments showed no elastic deformation, others were subjected to stresses in excess of 200 million pascals (about 30,000 psi). This is much higher than the tens of millions of pascals of stress reported in previous indirect strength measurements of SAFOD rocks.

"Although there are a variety of possible origins of the measured stresses, we think these measured stresses are records of seismic events shocking the rock", says co-author Chen of China's Xi'an Jiantong University. It is the only mechanism consistent with the geological setting and microscopic observations of the rock."

The authors believe their Laue X-ray microdiffraction technique has great potential for measuring the magnitude and orientation of residual stresses in rocks, and that with this technique quartz can serve as "paleo-piezometer" for a variety of geological settings and different rock types.

"Understanding the stress fields under which different types of rock fail will help us better understand what triggers earthquakes," says Kunz. "Our study could mark the beginning of a whole new era of quantifying the forces that shape the Earth."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
DOE/Lawrence Berkeley National Laboratory
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SHAKE AND BLOW
Dutch 'put production before safety' in quake-hit area
The Hague (AFP) Feb 18, 2015
A Dutch public commission said Wednesday government and energy companies had put production ahead of safety in Europe's biggest gas field, triggering a series of minor earthquakes. "It seems that safety in regards to earthquakes had no influence on the decision to extricate gas" from northern Groningen, the independent Dutch Safety Board (OVV) said in a report. The OVV launched an invest ... read more


SHAKE AND BLOW
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Next Launch of Heavy Angara-5 Rocket Due Next Year

SES Announces Two Launch Agreements With SpaceX

Leaders share messages, priorities at AFA Symposium

SHAKE AND BLOW
NASA's Curiosity Mars Rover Drills at 'Telegraph Peak'

How Can We Protect Mars From Earth, While Searching For Life

The Search For Volcanic Eruptions On Mars Reaches The Next Level

Using Curiosity to Search for Life

SHAKE AND BLOW
Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

SHAKE AND BLOW
New Horizons Spots Small Moons Orbiting Pluto

The View from New Horizons: A Full Day on Pluto-Charon

New Horizons snaps new images of Pluto en route to historic flyby

Something Special in the Air

SHAKE AND BLOW
Planets Can Alter Each Other's Climates over Eons

The mystery of cosmic oceans and dunes

Laser 'ruler' holds promise for hunting exoplanets

Scientists predict earth-like planets around most stars

SHAKE AND BLOW
Orion test flight yields critical data for next mission

NASA, Orbital ATK preparing solid tocket booster avionics

IXV Spaceplane misison a boost Thales Alenia Space

A Composite Booster Gets a Burst of Energy

SHAKE AND BLOW
Argentina welcomes first Chinese satellite tracking station outside China

More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

SHAKE AND BLOW
Dawn begins exploration of the first dwarf planet

'Bright Spot' on Ceres Has Dimmer Companion

Dawn Captures Sharper Images of Ceres

Be My Valentine: Rosetta Spacecraft Makes Close Pass by Comet 67P




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.