. Space Travel News .

A new algorithm could help prevent midair collisions
by Staff Writers
Boston MA (SPX) Jul 08, 2011

illustration only

The Federal Aviation Administration (FAA) has mandated that by 2020, all commercial aircraft - and small aircraft flying near most airports - must be equipped with a new tracking system that broadcasts GPS data, providing more accurate location information than ground-based radar. In anticipation of the deadline, the FAA has also charged MIT researchers with leading an investigation of the system's limits and capacities.

In October, at the 30th Digital Avionics Systems Conference in Seattle, MIT researchers will present an early result of that investigation, a new algorithm that uses data from the tracking system to predict and prevent collisions between small aircraft. In the last 10 years alone, 112 small planes have been involved in midair collisions, and thousands more have reported close calls.

The chief challenge in designing a collision-detection algorithm, says Maxime Gariel, a postdoc in MIT's International Center for Air Transportation and lead author on the new paper, is limiting false alarms.

"If half the time it's a false alert," Gariel says, "[people] are not going to listen to it, or they'll turn it off." At the same time, the algorithm has to have some room for error: While GPS is more accurate than radar tracking, it's not perfect; nor are the communications channels that planes would use to exchange location information. Moreover, any prediction of a plane's future position can be thrown off by unexpected changes of trajectory.

Puckish predictions
Much of the work on the new algorithm thus involved optimizing the trade-off between error tolerance and false alarms. Gariel and his collaborators - John Hansman, the T. Wilson (1953) Professor of Aeronautics and Astronautics and Engineering Systems, and Emilio Frazzoli, an associate professor of aeronautics and astronautics - adopted a two-tiered system of alerts: A moderate alert would warn pilots that their trajectories are converging, and a high alert would indicate a severe risk of collision.

Associated with each alert is a volume of space around each plane, which Gariel describes as a "hockey puck," that describes the plane's probable position given a certain GPS reading. (The volume is puck-shaped because planes tend to move vertically much more slowly than they do horizontally.) The hockey puck that corresponds to the high alert is smaller and of fixed size. The hockey puck that corresponds to the moderate alert is larger and fluctuates according to planes' trajectories.

For instance, if two planes are headed in the same direction, their moderate-alert hockey pucks are relatively small; but if they're headed toward each other, their hockey pucks are larger, since they'll have much less time to react to an impending collision. If an extrapolation from two planes' recent trajectories suggests that either set of hockey pucks will intersect, the system issues the corresponding alert.

To calculate the optimal puck sizes, Gariel used six months' worth of data from airports in the San Francisco area. But in testing the algorithm's utility, the researchers had the advantage of a very accurate computer model of air traffic created by researchers at MIT's Lincoln Laboratory.

Based on more than eight months of data from all the aviation radar systems in the United States, the Lincoln Lab model generates random trajectories for hypothetical aircraft that accord very well with real-world statistics. Working together with Fabrice Kunzi, a graduate student in Hansman's group, Gariel and his colleagues tested their algorithm against the Lincoln Lab model and found that, indeed, it had a low false-alarm rate.

Model behavior
David Gray, the FAA's lead on the project, explains that while the agency will require small aircraft to broadcast their GPS coordinates by 2020, it hasn't yet mandated that they install equipment for receiving and processing such broadcasts. "One of the key things that we want to provide as part of this system is additional value to the general-aviation [small-plane] pilot," Gray says. "We hope it adds value and tips the scale in the direction of saying, 'Yes, this is something that I want.'"

Gray has not yet had the opportunity to review the MIT researchers' results in detail, but says that "from the limited data I've seen, it seems that the algorithms that they're looking at are performing better than the algorithms that are in existing systems that can be bought today."

He points out, however, that the Lincoln Lab air-traffic model is based on radar data, and that small planes often fly below radar - particularly near airports, where nearly 60 percent of midair collisions take place.

"They're using the model for the scenarios that it's applicable for," Gray says, "and I think that's going to be great. But for the scenarios that it's not applicable for, they're going to have to develop other scenarios for us to assess."

Indeed, Gariel and Kunzi are working to develop a new computer model that takes into account the standard flight paths that small aircraft tend to fall into near airports, to see if the collision-detection algorithm still performs as well. They're also hoping to begin testing the algorithm on real planes.

Related Links
GPS Applications, Technology and Suppliers

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

LOCiMOBILE GPS Tracking Apps Cross over 1 Million users in 116 countries
Los Angeles CA (SPX) Jul 06, 2011
GTX has announced its LOCiMOBILE subsidiary's GPS Tracking Apps crossed over 1 Million downloads with users in 116 countries and continues to be on the top charts of iTunes and Android market place. "The GPS Tracking app is the simplest way to stay connected to a child, parent, friend or business associate, quickly and accurately from a Smartphone or internet ready device like the iPad, iP ... read more

Final Soyuz launcher integration is underway for Arianespace Globalstar mission from Kazakhstan

Arianespace to launch THOR 7 satellite for Telenor

Space X Dragon Spacecraft Returns To Florida

Arianespace Launch Postponed At Least 20 Days

Two Possible Sites for Next Mars Rover

Scientists uncover evidence of a wet Martian past in desert

NASA Research Offers New Prospect Of Water On Mars

New Animation Depicts Next Mars Rover in Action

Marshall Center's Bassler Leads NASA Robotic Lander Work

NASA puts space probe into lunar orbit

ARTEMIS Spacecraft Prepare for Lunar Orbit

LRO Showing Us the Moon as Never Before

Clocking The Spin of Neptune

Scientist accurately gauges Neptune's spin

Williams and MIT Astronomers Observe Pluto and its Moons

SOFIA Successfully Observes Challenging Pluto Occultation

Microlensing Finds a Rocky Planet

A golden age of exoplanet discovery

CoRoT's new detections highlight diversity of exoplanets

Rage Against the Dying of the Light

Planetary Science Institute Selects XCOR To Fly ATSA Suborbital Observatory

PSLV-C17 to Launch GSAT-12 on July 15, 2011

Astrium signs up for Next Gen Launcher High Thrust Engine

NASA Will Compete Space Launch System (SLS) Boosters

Time Enough for Tiangong

China launches experimental satellite

China to launch an experimental satellite in coming days

China to launch new communication satellite

First-Ever View of a Sungrazer Comet In Front of the Sun

Dawn Team Members Check out Spacecraft

Does Asteroid Vesta Have a Moon

Richard Binzel on near-Earth asteroids

Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement