. Space Travel News .

A magnetic surprise for Venus Express
by Staff Writers
Paris (ESA) Apr 09, 2012

ESA's Venus Express spacecraft follows a near-polar orbit which is ideal for instruments such as the magnetometer and low-energy particle detector to observe the solar wind - ionosphere - magnetotail interaction. Previous missions, such as Pioneer Venus, have either been in different orbits or been active at different periods of solar activity, so they not been able to detect these reconnection events.

Venus is a rarity among planets - a world that does not internally generate a magnetic field. Despite the absence of a large protective magnetosphere, the near-Venus environment does exhibit a number of similarities with planets such as Earth. The latest, surprising, example is the evidence for magnetic reconnection in Venus' induced magnetotail.

Planets which generate magnetic fields in their interiors, such as Earth, Mercury, Jupiter and Saturn, are surrounded by invisible magnetospheres. Their magnetic fields deflect the charged particles of the solar wind (electrons and protons) as they stream away from the Sun. This deflection creates a magnetosphere - a protective "bubble" around the planet - which ends in an elongated magnetotail on the lee side of the magnetosphere.

Since Venus has no intrinsic magnetic field to act as a shield against incoming charged particles, the solar wind sometimes interacts directly with the upper atmosphere. However, Venus is partially protected by an induced magnetic field.

As on Earth, solar ultraviolet radiation removes electrons from the atoms and molecules in the upper atmosphere, creating a region of electrically charged gas known as the ionosphere. This ionised layer interacts with the solar wind and the magnetic field carried by the solar wind.

During the continuous battle with the solar wind, this region of the upper atmosphere is able to slow and divert the flow of particles around the planet, creating a magnetosphere, shaped rather like a comet's tail, on the lee side of the planet

Spacecraft observations over many decades have shown that magnetic reconnection occurs frequently in the magnetospheres of Earth, Mercury, Jupiter and Saturn. This process, which converts magnetic energy into kinetic energy, occurs when oppositely directed magnetic field lines break and reconnect with each other. On Earth, this reconnection is responsible for magnetic storms and polar auroras - the so-called Northern and Southern Lights.

Until now, reconnection was not generally thought to occur on non-magnetised planets. However, Tielong Zhang and an international team of co-authors now report on Science Express, the online version of the journal Science, that they have found the first evidence of magnetic reconnection in Venus' magnetotail.

ESA's Venus Express spacecraft follows a near-polar orbit which is ideal for instruments such as the magnetometer and low-energy particle detector to observe the solar wind - ionosphere - magnetotail interaction. Previous missions, such as Pioneer Venus, have either been in different orbits or been active at different periods of solar activity, so they not been able to detect these reconnection events.

On 15 May 2006, Venus Express was crossing the Venusian magnetotail when it observed a rotational magnetic field structure over a period of about 3 minutes. Calculations based on its duration and speed imply that it was about 3400 km across.

The event, which took place about 1.5 Venus radii (about 9000 km) down the tail, is thought to be evidence of a passing plasmoid - a transient magnetic loop structure which is formed by magnetic reconnection in a planetary magnetotail.

Further studies of the magnetic field data from Venus Express revealed the signatures of many similar observations of energy exchange between the magnetic field and the plasma in the tail.

The data also show that, in many respects, the magnetosphere of Venus is a scaled-down version of Earth's.

Magnetic reconnection occurs in the Earth's magnetotail and plasma sheet at a distance of about 10-30 planetary radii down the magnetotail. Since Earth's magnetosphere is 10 times larger, reconnection at Venus would be expected to occur 1-3 radii down its tail. That is exactly where Venus Express detected the reconnection events.

"Plasmoids are common features in the magnetospheres of planets such as Earth and Jupiter, but they were not expected in the magnetotail of an unmagnetised planet such as Venus," said Tielong Zhang, lead author of the Science paper. Zhang is Principal Investigator for the magnetometer instrument on Venus Express and a Senior Research Scientist at the Space Research Institute in Graz, Austria.

"The reconnection splits the magnetotail, causing most of the plasma in the tail to be ejected into space. It also forms a plasmoid structure which heads towards Venus and channels a fraction of the energy flux of the solar wind into the night-side atmosphere. As a result, the magnetic reconnection causes plasma circulation at Venus, similar to what happens in Earth's magnetotail."

The discovery that plasma is lost from the tail as a result of magnetic reconnections provides a possible new mechanism for explaining how and why gases are lost from Venus's upper atmosphere. This has implications for understanding how Venus lost its water after the planet began to experience a runaway greenhouse effect.

"Although the understanding of atmospheric loss is a key to establishing the evolutionary history of planets, the role of magnetic reconnection is still poorly understood because of the scarcity of in situ observations at planets other than Earth," said Hakan Svedhem, ESA's Venus Express Project Scientist.

"This result confirms that observation of the terrestrial planets by spacecraft such as Venus Express, Mars Express and Cluster is essential if we are to understand the complex evolution of atmospheres and planets in general."

Zhang, T. L., et al., "Magnetic Reconnection in the Near Venusian Magnetotail", Science 1217013 Published online 5 April 2012, doi:10.1126/science.1217013

Related Links
Venus Express
Venus Express News and Venusian Science

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries

And it's 3... 2... 1... blastoff! Discover the thrill of a real-life rocket launch.


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Space Weather: Explosions on Venus
Greenbelt, MD (SPX) Mar 08, 2012
In the grand scheme of the solar system, Venus and Earth are almost the same distance from the sun. Yet the planets differ dramatically: Venus is some 100 times hotter than Earth and its days more than 200 times longer. The atmosphere on Venus is so thick that the longest any spacecraft has survived on its surface before being crushed is a little over two hours. There's another difference, ... read more

Spy satellite-carrying rocket blasts off

Orbital Receives Order for Minotaur I Space Launch Vehicle From USAF

Space Launch System Program Completes Step One of Combined Milestone Reviews

Russian Proton-M Puts Military Satellite into Orbit

Post Solstice Rover Takes The Opportunity For A Wiggle

Russia and Europe give boost to Mars robotic mission

Mars missions race, India takes lead

12-Mile-High Martian Dust Devil Caught In Act

Russia Plans to Launch Lunar Rovers to Moon after 2020

Russia to explore moon

Earth's Other Moons

Flying Formation - Around the Moon at 3,600 MPH

New Horizons on Approach: 22 AU Down, Just 10 to Go

NASA Extends Kepler, Spitzer, Planck Missions

NASA's Kepler Mission Awarded Mission Extension

A planetary system from the early Universe

Discovery of an 'alien earth' imminent?

Plutonium to Pluto: Russian nuclear space travel breakthrough

NASA and ATK Push Ahead With Booster for Deep Space Exploration System

SLS Avionics Test Paves Way for Full-Scale Booster Firing

Getting to the moon on drops of fuel

China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

Russia Wants To Bind Satellite To Apophis Asteroid

Russia wants to puts satellite on asteroid

CODITA: measuring the cosmic dust swept up by the Earth

Comet Wild2: First Evidence of Space Weathering

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement