Subscribe to our free daily newsletters
  Space Travel News  




Subscribe to our free daily newsletters



INTERNET SPACE
A light microscope made only with consumer electronic products
by Staff Writers
Madrid, Spain (SPX) Jun 19, 2016


A large field of view interferometric microscope can detect single protein layers. Image courtesy ICFO. For a larger version of this image please go here.

Light microscopes based on scattering, reflection and absorption, or a combination of these, have been a key enabling technology for the study of objects invisible to our eyes, especially in the field of biology. Many improvements have been made in the past to create state-of-the-art techniques capable of achieving unprecedented resolution and sensitivity albeit their cost, which drastically increases with quality and versatility, making them quite unavailable for general applications.

Holographic, phase contrast or differential interference contrast (DIC) miscroscopes have been implemented especially for making "visible", otherwise "invisible", transparent objects, opening a new pathway towards the study and characterization of relevant structures such as biological cells or protein layers. The DIC microscope invented by Carl Zeiss several decades ago is one of the most popular in this field.

Now, even though these techniques have offered high sensitivity and resolution, they have shown to be severely limited as far as field-of-view (FOV) and depth-of-field (DOF), a major drawback and great limitation when it comes to large samples, where a scanning method is mandatory and time consuming. The trade-off will always be there: when trying to improve one parameter with a specific combination of lenses, the other will deteriorate.

Therefore, in recent years, research has been focused on developing microscopes without optical lenses or objectives that could offer unprecedented FOV while maintaining fair sensitivity and resolution.

In a paper published in Science Advances, ICFO researchers Roland Terborg, Josselin Pello, Ilaria Mannelli, UPC Prof. at ICFO Juan P. Torres and ICREA Prof. at ICFO Valerio Pruneri, have built a novel low-cost, compact on-chip microscope, made with consumer electronic products, capable of simultaneously measuring nanometer-thick changes over a large volume (0.5cm^3) in transparent objects such as glass.

The researchers have developed a large FOV interferometric on-chip lens free microscope (LIM) based on a novel design with a very high axial sensitivity and DOF, applying a technique adequate to be used in microarray platforms for the detection of proteins without the need of labels.

As Roland Terborg comments, "The challenge of developing a lens-free microscope to detect single protein layers (less than 1nm of optical path difference) seemed rather difficult at the beginning. But as we started to develop the device, everything seemed to fit in very well surpassing our expectations! Instead of having to use very expensive components, we discovered that we could actually use consumer end products without a significant decrease in its sensitivity".

By using collimated polarized light, the team of scientists was able to reconstruct the image by shining light through the transparent sample to observe and analyze the phase shift and interference intensity pattern, a technique known as phase-shifting interferometry (PSI).

As UPC Prof at ICFO Juan P. Torres states, "any slight refractive index change introduced by an impurity in the sample is translated into a phase difference and thus an intensity variation in the pattern, showing the contours and therefore size of the irregularity".

As ICREA Prof. at ICFO Valerio Pruneri comments "the device means a major step forward for light microscopy techniques, especially for microarray platforms since it could definitely be used as a point-of-care tool in the diagnosis and treatment of major diseases such as Sepsis, a critical area where fast and accurate results can translate into life changing health outcomes for individuals. We are also thrilled by the fact that this will be part of the Sixsenso spin-off project portfolio including similar devices for detection of particulates and micro-organisms".

The new device has proven to be low-cost, compact, and extremely suitable for point-of-care applications, making it an ideal device to be fully integrated in cameras of smart phones or tablets and used for detecting and scanning of transparent objects or surfaces.

Research paper: "Ultrasensitive interferometric on-chip microscopy of transparent objects" R. A. Terborg, J. Pello, I. Mannelli, J. P. Torres, V. Pruneri, Sci. Adv., Science Advances, 2016, Vol. 2, no.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
ICFO-The Institute of Photonic Sciences
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
New nanomaterial offers promise in bendable, wearable electronic devices
Chicago IL (SPX) Jun 16, 2016
An ultrathin film that is both transparent and highly conductive to electric current has been produced by a cheap and simple method devised by an international team of nanomaterials researchers from the University of Illinois at Chicago and Korea University. The film - actually a mat of tangled nanofiber, electroplated to form a "self-junctioned copper nano-chicken wire" - is also bendable ... read more


INTERNET SPACE
MUOS-5 satellite encapsulated for launch

Airbus Safran Launchers confirms the maturity of the Ariane 6 launcher

Russian Proton-M Rocket Puts US Intelsat DLA-2 Satellite Into Orbit

US Senate reaches compromise on Russian rocket engines

INTERNET SPACE
Musk explains his 'cargo route' to Mars

Remarkably diverse flora in Utah, USA, trains scientists for future missions on Mars

NASA Mars Orbiters Reveal Seasonal Dust Storm Pattern

Study of Opportunity Wheel Scuff Continues

INTERNET SPACE
US may approve private venture moon mission: report

Fifty Years of Moon Dust

Airbus Defence and Space to guide lunar lander to the Moon

A new, water-logged history of the Moon

INTERNET SPACE
The Jagged Shores of Pluto's Highlands

Secrets Revealed from Pluto's "Twilight Zone"

Purdue team finds convection could produce Pluto's polygons

Pluto's Heart: Like a Cosmic 'Lava Lamp'

INTERNET SPACE
New planet is largest discovered that orbits 2 suns

Cloudy Days on Exoplanets May Hide Atmospheric Water

Likely new planet may be in slow death spiral

On exoplanets, atmospheric water may be hiding behind clouds

INTERNET SPACE
Ukraine Unlikely to Meet Challenge of Building Large Rocket Engines for US

SLS Booster 'Chills Out' Ahead of Super-Hot Ground Test

US-Ukrainian Rocket Engine Proposal 'Formula for Disaster'

Understanding today's rocket engine market

INTERNET SPACE
Experts Fear Chinese Space Station Could Crash Into Earth

Bolivia to pay back loan to China for Tupac Katari satellite

China plans 5 new space science satellites

NASA Chief: Congress Should Revise US-China Space Cooperation Law

INTERNET SPACE
Natural quasicrystals may be the result of collisions between objects in the asteroid belt

Planetary Resources and Luxembourg partner to advance space resource industry

Scientists reconstruct the history of asteroid collisions

Luxembourg takes first steps to asteroid mining law




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement