Subscribe free to our newsletters via your
. Space Travel News .

A focus on flight
by Staff Writers
Boston MA (SPX) Apr 27, 2015

While most other research into bird flight has focused on what scientists call "clear-sky" flying, Williams' study was focused on understanding how, once birds identify gaps between obstacles - whether they are buildings, cars, homes or trees - adjust their in-flight posture to squeeze through those spaces.

Navigating through a cluttered environment at high speed is among the greatest challenges in biology - and it's one virtually all birds achieve with ease. It's a feat David Williams hopes to understand.

A former post-doctoral fellow in the lab of Andrew Biewener, the Charles P. Lyman Professor of Biology, and a current post-doc at the University of Washington, Williams is the lead author of a study that shows birds use two highly stereotyped postures to avoid obstacles in flight. The study could open the door to new ways to program drones and other unmanned aerial vehicles to avoid similar obstacles. The study is described in a paper published earlier this month in Proceedings of the National Academy of Sciences.

"This was somewhat surprising to us," Williams said, of the results. "In lower order animals like insects we think of these very stereotyped motor programs where you stimulate your muscle, and the passive dynamics of your exoskeleton or the tendons attached to that muscle control most of the motion.

"But when you look at higher-order animals, it's common to expect that those motor programs are going to be more complex, and there's going to be more subtle gradations in those programs, so it was surprising to see a very high-order animal like a bird using very simple motor programs. Biology is optimized to be just good enough to work, so what that indicates is those are very effective motor programs."

While most other research into bird flight has focused on what scientists call "clear-sky" flying, Williams' study was focused on understanding how, once birds identify gaps between obstacles - whether they are buildings, cars, homes or trees - adjust their in-flight posture to squeeze through those spaces.

"A big part of biological motion is energy minimization and robustness," he explained. "You want to be able to get around without exhausting yourself, and if you do hit something, you don't want it to be something that's unrecoverable. You don't want to fall to the ground, or to break a wing."

The expectation, Williams said, was that birds would adopt a myriad of different postures to allow them to fit through obstacles of varying sizes. The reality, however, was far more interesting.

"What we actually found was there are two very distinct, stereotyped postures that are adopted," he said. "We thought there would be body rotation, we though there might be intermediate stages where they would pull their wings in a little bit, we thought there would be stages where they might have one wing up and one down. We thought it would be catch-as-catch-can, and it's not."

In the first posture - what Williams calls "wings paused" - the birds wings are held wide out, at the top of the upswing of their wing beat. In the second, the birds tuck their wings back against their body, almost as if they were perched on a branch.

"The paused posture...interrupts their wing beat cycle for shorter periods of time, so they tend to lose less height, and their wings are ready to hit the air running, so to speak," Williams said. "We thought maybe they were using the ballistic posture in cases where they want to get smaller, but it doesn't actually make them much smaller from a forward angle. What it does do is reduce the amount they're going to rotate or be disrupted if they do collide with anything."

To understand the birds' in flight postures, Williams and colleagues built a 20-meter long flight corridor - essentially an obstacle course consisting of a number of vertical poles - for birds to fly through.

Researchers then fitted pigeons with small backpacks that powered a series of infrared LEDs, which were placed along the bird's back, at their wingtips, their wrist and on their head. As the birds flew through the corridor, the LEDs were tracked by an array of five high-speed cameras, allowing researchers to precisely determine their posture.

Going forward, Williams said, researchers hope to expand the study to include horizontal obstacles similar to tree limbs, but the findings in the current study may offer new insight into how unmanned aerial vehicles could be programmed to avoid obstacles.

"When most people think about drones they think about quad-copters...people are getting better at controlling them through very narrow and complex obstacle courses, but there are experimental flight devices that feature adjustable wing aspect ratios," Williams said. "This suggests that if we can build the brains into the material structure of an object, rather than into the computation controlling the object...we can change the stability through that mechanism."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Harvard University
UAV News - Suppliers and Technology

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

ECA Group develops illegal-drone detection system
Paris (UPI) Apr 13, 2015
Technology to rapidly locate, identify and track illegal drone aircraft and their operators has been developed by the ECA Group of France. Groupe Gorgé, parent company of ECA Group, said the technology is for use by its IT180 drone and includes a number of transponders. "After detecting the offending drone through land-based resources, the strategy consists of activating the IT1 ... read more

SpaceX Dragon cargo ship arrives at space station

Video shows SpaceX rocket booster crash land on floating target

Russia Should Consider Launching Super-Heavy Rockets From Vostochny

Rocket tips over after SpaceX recycle attempt

Robotic Arm Gets Busy on Rock Outcrop

Mars might have liquid water

NASA's Curiosity Rover Making Tracks and Observations

NASA Mars Rover's Weather Data Bolster Case for Brine

Dating the moon-forming impact event with meteorites

Japan to land probe on the moon in 2018

Japan planning moon mission: space agency

Yutu finds Moon still active in old age

Capstone: 2015

NASA's New Horizons Nears Historic Encounter with Pluto

Pluto, now blurry, will become clear with NASA flyby

NASA Extends Campaign for Public to Name Features on Pluto

White Dwarf May Have Shredded Passing Planet

Spitzer, OGLE spot planet deep within our galaxy

Spitzer Spots Planet Deep Within Our Galaxy

An exoplanet with an infernal atmosphere

US Space Company Unveils New Rocket

Boeing-Lockheed team for Vulcan rocket with reusable engine

Blue Origin completes acceptance testing of BE-3 engine for New Shepard

Russia's Angara launcher becomes cheaper to manufacture

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

Ceres' Bright Spots Come Back Into View

SwRI team studies meteorites from asteroids to date moon impacts

Dawn Glimpses Ceres' North Pole

Rosetta and Philae find comet not magnetised

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.