Subscribe to our free daily newsletters
  Space Travel News  




Subscribe to our free daily newsletters



TIME AND SPACE
A cosmic clumpy doughnut around black hole
by Staff Writers
Pasadena CA (JPL) Dec 21, 2015


Galaxy NGC 1068 can be seen in close-up in this view from NASA's Hubble Space Telescope. NuSTAR's high-energy X-rays eyes were able to obtain the best view yet into the hidden lair of the galaxy's central, supermassive black hole. Image courtesy NASA/JPL-Caltech. For a larger version of this image please go here.

The most massive black holes in the universe are often encircled by thick, doughnut-shaped disks of gas and dust. This deep-space doughnut material ultimately feeds and nourishes the growing black holes tucked inside. Until recently, telescopes weren't able to penetrate some of these doughnuts, also known as tori.

"Originally, we thought that some black holes were hidden behind walls or screens of material that could not be seen through," said Andrea Marinucci of the Roma Tre University in Italy, lead author of a new Monthly Notices of the Royal Astronomical Society study describing results from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, and the European Space Agency's XMM-Newton space observatory.

With its X-ray vision, NuSTAR recently peered inside one of the densest of these doughnuts known to surround a supermassive black hole. This black hole lies at the center of a well-studied spiral galaxy called NGC 1068, located 47 million light-years away in the Cetus constellation.

The observations revealed a clumpy, cosmic doughnut. "The rotating material is not a simple, rounded doughnut as originally thought, but clumpy," said Marinucci.

Doughnut-shaped disks of gas and dust around supermassive black holes were first proposed in the mid-1980s to explain why some black holes are hidden behind gas and dust, while others are not. The idea is that the orientation of the doughnut relative to Earth affects the way we perceive a black hole and its intense radiation. If the doughnut is viewed edge-on, the black hole is blocked. If the doughnut is viewed face-on, the black hole and its surrounding, blazing materials can be detected. This idea is referred to as the unified model because it neatly joins together the different black hole types, based solely upon orientation.

In the past decade, astronomers have been finding hints that these doughnuts aren't as smoothly shaped as once thought. They are more like defective, lumpy doughnuts that a doughnut shop might throw away.

The new discovery is the first time this clumpiness has been observed in an ultra-thick doughnut, and supports the idea that this phenomenon may be common. The research is important for understanding the growth and evolution of massive black holes and their host galaxies.

"We don't fully understand why some supermassive black holes are so heavily obscured, or why the surrounding material is clumpy," said co-author Poshak Gandhi of the University of Southampton in the United Kingdom. "This is a subject of hot research."

Both NuSTAR and XMM-Newton observed the supermassive black hole in NGC 1068 simultaneously on two occasions between 2014 to 2015. On one of those occasions, in August 2014, NuSTAR observed a spike in brightness. NuSTAR observes X-rays in a higher-energy range than XMM-Newton, and those high-energy X-rays can uniquely pierce thick clouds around the black hole. The scientists say the spike in high-energy X-rays was due to a clearing in the thickness of the material entombing the supermassive black hole.

"It's like a cloudy day, when the clouds partially move away from the sun to let more light shine through," said Marinucci.

NGC 1068 is well known to astronomers as the first black hole to give birth to the unification idea. "But it is only with NuSTAR that we now have a direct glimpse of its black hole through such clouds, albeit fleeting, allowing a better test of the unification concept," said Marinucci.

The team says that future research will address the question of what causes the unevenness in doughnuts. The answer could come in many flavors. It's possible that a black hole generates turbulence as it chomps on nearby material. Or, the energy given off by young stars could stir up turbulence, which would then percolate outward through the doughnut.

Another possibility is that the clumps may come from material falling onto the doughnut. As galaxies form, material migrates toward the center, where the density and gravity is greatest. The material tends to fall in clumps, almost like a falling stream of water condensing into droplets as it hits the ground.

"We'd like to figure out if the unevenness of the material is being generated from outside the doughnut, or within it," said Gandhi.

"These coordinated observations with NuSTAR and XMM-Newton show yet again the exciting science possible when these satellites work together," said Daniel Stern, NuSTAR project scientist at NASA's Jet Propulsion Laboratory in Pasadena, California.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
NuSTAR at NASA
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Earth-sized telescope finds clue to black hole growth
Waterloo, Canada (SPX) Dec 04, 2015
A new discovery, published in the journal Science, has greatly deepened our understanding black holes, which are believed to be the gravitational engines at the centres of most galaxies, including our own. Using an array of telescopes that spans the globe, astronomers detected evidence of magnetic fields near Sagittarius A*, the 4.5-million-solar-mass black hole at the centre of the Milky ... read more


TIME AND SPACE
Scientists Launch NASA Rocket into "Speed Bumps" Above Norway

NASA orders second Boeing Crew Mission to ISS

O3b signs agreement with Arianespace for a fourth Soyuz launch

SpaceX Falcon 9 launch scrubbed until Monday

TIME AND SPACE
Study finds evidence for more recent clay formation on Mars

New Mars rover findings revealed at American Geophysical Union Conference

Opportunity performs a week of robotic arm at Marathon Valley

Rocks Rich in Silica Present Puzzles for Mars Rover Team

TIME AND SPACE
XPRIZE verifies moon express launch contract, kicking off new space race

Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

TIME AND SPACE
New Horizons team releases detailed slice of Pluto

Zooming in on Pluto's Pattern of Pits

Pluto's close-up, now in color

New Visualization of Space Environment at Pluto

TIME AND SPACE
Monster planet is 'dancing with the stars'

Exoplanets Water Mystery Solved

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

TIME AND SPACE
XCOR claims major breakthrough with its engine technology

DoD to reply to McCain's letter on Russian rocket engines

Vega graduates with perfect record

NASA Marshall Prepares for SLS Foam Testing

TIME AND SPACE
Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

TIME AND SPACE
Asteroid WT24 looks even better second time around

NASA: Asteroid to pass by Earth on Christmas Eve

Hayabusa2 Earth Swing-by Result

Ride along with Rosetta through the eyes of OSIRIS




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement