Subscribe free to our newsletters via your
. Space Travel News .




ENERGY TECH
A coating that protects against heat and oxidation
by Staff Writers
Pfinztal, Germany (SPX) Nov 25, 2014


Hollow spheres of aluminum oxide are filled with gas. Scientists have developed an economical way of manufacturing these insulators. Image courtesy Fraunhofer ICT.

Researchers have developed a coating technique that they plan to use to protect tur- bine engine and waste incinerator components against heat and oxidation. A topcoat from micro-scaled hollow aluminium oxide spheres provides heat insulation, in the lab, already proved more economical than conventional techniques. Gases don't conduct heat as well as solids do. Cellular or aerated concretes take advantage of this effect, which experts call "gas-phase insulation".

The heat barrier is achieved by air encased in the cavities of the concrete. But gas-phase insulation has far greater potential than keeping our homes warm. It can also be used to protect turbine engine and waste incinerator components when subjected to intense heat. All you need to do is transfer this effect to a coating that is just a few hundred micrometers thick.

Temperature differences of over 400 degrees Celsius
Scientists at the Fraunhofer Institute for Chemical Technology ICT in Pfinztal have not only done just that, they've also done it in a particularly economical way. They've designed a coating that consists of an outer topcoat from conjoined aluminium oxide spheres.

"These spheres are hollow and filled with gas," explains coatings expert Dr. Vladislav Kolarik from the ICT's Energetic Systems department. When the outer side of a part is exposed to temperatures of 1000 degrees Celsius, these gas-filled spheres reduce temperatures on the part's inner side to under 600 degrees Celsius - as the ICT scientists have demonstrated in their laboratories.

Since gas and steam turbines used for energy generation, combustion chambers, waste incinerator generators and temperature sensors, and reactors in the chemical and petrochemical industries are all subjected to temperatures of up to 1000 degrees Celsius, there is considerable demand of thermal protection.

What's most remarkable is that the heat insulating layer from hollow aluminium oxide spheres is obtained on the basis of a conventional, economic process. Operators only have to do some simple math to see the benefits: conventional thermal barrier techniques - most of which are based on ceramic materials - are expensive. The process the scientists adapted was originally designed to protect metallic components from oxidation.

"We've optimized the technique so that the coat not only retains its oxidation protection, but furthermore protects against heat," says Dr. Kolarik. The basic coating layer forms by interaction of aluminum particles and the metallic component. This is done by depositing aluminum powder on the surface of the metal and heating it all up to a suitable temperature over several hours.

The result is an aluminum-rich coating on the component's surface that protects against oxidation at high temperature. With the new procedure the topcoat from the hollow aluminum oxide spheres is additionally formed. "Up to now, it never occurred to anyone to use these spheres to produce another coating layer - they were just a waste product," says Dr. Kolarik.

Now the scientists have refined the process so they can produce both coating layers in the required thickness. The way it works is to take aluminum particles and mix them with a viscous liquid bonding agent. This produces a substance similar to a paint or slurry, which the scientists then manually paint, spray or brush onto the metallic component. "All that's left is to add a fair bit of heat," says Dr. Kolarik.

But it's all easier said than done: Dr. Kolarik and his team have had to precisely fine tune the size and size distribution of the aluminum particles, the temperature and duration of the heating stage and the viscosity of bonding agents. "Just like a master chef, the first job was to come up with a winning recipe."

"We're currently in the process of putting the findings from the EU-funded PARTICOAT project into practice. This involves coating bigger and bigger components without exceeding the temperature limits for each application area. At the same time we're trying out techniques to automate the whole coating process. Our plan is to follow in the footsteps of the aerated concrete that helps insulate our homes - that's been in series production for a long time now," says Dr. Kolarik.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Fraunhofer Institute for Chemical Technology ICT
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Chinese power companies pursue smart grids
Tianjin, China (SPX) Oct 21, 2014
After conducting an investigation about the current state of the operation of medium voltage distribution grids and the integration of distributed generation (DG) of renewable resources across China, scientists at the Key Laboratory of Smart Grid, under the auspices of the Ministry of Education, at Tianjin University in the east coast city of Tianjin, set out an array of R and D opportunities to ... read more


ENERGY TECH
Elon Musk unveils 'drone ship' and 'x-wing' fins for rockets via Twitter

Russian Rocket Supply for Satellites Launches Continues

China launches Yaogan-24 remote sensing satellite

Soyuz Installed at Baikonur, Expected to Launch Wednesday

ENERGY TECH
Within Rover's Reach at Mars Target Area 'Alexander Hills'

Mars Exploration Program Director Named

Second Time Through, Mars Rover Examines Chosen Rocks

Mars was warm enough for flowing water, but only briefly

ENERGY TECH
Young Volcanoes on the Moon

U.K. group to crowd-source funding for moon mission

After Mars, India space chief aims for the moon

China examines the three stages of lunar test run

ENERGY TECH
Pluto's Exotic Chemistry

Clues Revealed About Hidden Interior of Uranus

New Horizons Set to Wake Up for Pluto Encounter

Hubble Telescope Finds Potential Kuiper Belt Targets for New Horizons Pluto Mission

ENERGY TECH
Hot, Super-Earths Help Track Water-Rich Atmospheres

How to estimate the magnetic field of an exoplanet?

Follow the Dust to Find Planets

NASA's TESS mission cleared for next development phase

ENERGY TECH
European space plane set for February launch: firm

NASA Selects Student Teams for High-Powered Rocket Challenge

3-D Printed Engine Parts Withstand Hot Fire Tests

Swiss Space Systems concludes first phase of drop-tests

ENERGY TECH
China expects to introduce space law around 2020

China launches new remote sensing satellite

China publishes Earth, Moon photos taken by lunar orbiter

China plans to launch about 120 applied satellites

ENERGY TECH
NASA contracts two firms to work on asteroid mining

Rosetta Comet Landing in 'Thud' and 3D

Asteroid Mining Could Make For Boom Times

Philae probing comet with hours left on battery




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.