Subscribe to our free daily newsletters
  Space Travel News  




Subscribe to our free daily newsletters



A Year Of In-Orbit Experience For Galileo Rubidium Clocks

Galileo rubidium clock. Credits: ESA, Temex
by Staff Writers
Paris, France (ESA) May 22, 2007
Europe's first satellite-borne rubidium clocks have been in orbit for over a year. There is good news for the building of the Galileo system: the results obtained from GIOVE-A's first year of operations show performance that is largely in line with the specifications.

GIOVE-A, the first Galileo in-orbit validation element, was launched on 28 December 2005. One of its two rubidium clocks was switched on for the first time on 10 January 2006 and Galileo signals were transmitted two days later.

The timekeeping of the clocks on the Galileo spacecraft will play an important role in determining the overall accuracy of the system, so evaluation of their performance is a crucial part of the Galileo in-orbit verification process.

Indirect measurement
The orbit of GIOVE-A is precisely measured by a network of 10 ground-based laser ranging stations, to provide orbital data independent of the navigation data. The navigation signals broadcast from GIOVE-A, and from the GPS spacecraft constellation, are received by the world-wide network of 13 Galileo experimental sensor stations belonging to the GIOVE Mission Segment.

The technique used to characterise clock performance is known as Orbit Determination and Time Synchronisation (ODTS). ODTS is a statistical method which takes the Galileo and GPS data, together with the laser ranging data, and calculates spacecraft orbits, clock times, the effects of the Earth's atmosphere on the radio signals and the delays in the receiving systems.

The precision of the calculations is so great that even the tiny orbit disturbances caused by the pressure of sunlight shining on the satellites is taken into account.

The ground systems cannot measure the 'pure' clock performance on-board GIOVE-A. The 'apparent' clock performance observed on the ground is seen through the satellite signal generation chain, the radio transmission path through space, the receiver network and the algorithm used to perform the performance estimation.

Performance to date
Comparisons between the on-board clocks and identical units undergoing on-ground life testing show that no unexpected ageing or performance degradation is occurring due to the space environment. Extrapolation of performance measurements for limited-life components such as the rubidium lamps shows that they will easily exceed the required 12-year operational lifetime.

The measured performance of the clocks meets the specification over short and medium timescales. A few 'jumps' in clock frequency have been observed, which impact the long term accuracy. Such frequency changes are a well known phenomenon in rubidium clock technology but their cause is not yet well understood.

Their effect on GPS performance has already been analysed and corrective measures proposed. The Galileo team are ground testing a number of improvements to the clock design which are intended to minimise both the occurrence and size of the jumps.

Galileo is a joint initiative between ESA and the European Commission. When fully deployed in the early years of the next decade, it will be the first civilian positioning system to offer global coverage.

Related Links
GIOVE website
European GNSS Supervisory Authority
Galileo at EU
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Atomic Clock Signals May Be Best Shared By Fiber-Optics
Boulder CO (SPX) Mar 06, 2007
Time and frequency information can be transferred between laboratories or to other users in several ways, often using the Global Positioning System (GPS). But today's best atomic clocks are so accurate-neither gaining nor losing one second in as long as 400 million years-that more stable methods are needed.







  • Team America Rocketry Challenge Crowns New Champion
  • Orion Ignites The Dreams Of A Rocket Engineer
  • Methane May Allow Rockets To Go Beyond The Fringes Of Space
  • NASA To Build New Stand At Stennis To Test Ares Rocket Engines

  • Energia Posts 220 Percent Rise In 2006 Net Profit
  • Russia And ESA Sign Contract For Four Soyuz Launches From Kourou
  • Ariane 5 Achieves Record Performance With Geostationary Transfer Orbit
  • Ariane 5 Launches Twin GEO Birds

  • US Shuttle Atlantis Back On Launch Pad
  • Atlantis Is Go For Rollout
  • Shuttle Atlantis To Hit Launchpad Next Week
  • No Launch Delay After Train With Shuttle Booster Derails In US

  • Station Crew Unpack Progress 25
  • Another Russian Automated Space Truck Docks At Space Station
  • ISS Crew Size Could Be Doubled By 2009
  • Kazakh Cosmonauts To Complete Training By Year End As Another Progress Rolls Out

  • Science Subcommittees Focus On Ensuring Health And Vitality Of NASA Workforce
  • Malaysian Astronauts Head To NASA For Training
  • Using History To Design The Future
  • Amid Turtles And Sharks, Astronauts Train For Lunar Mission

  • China Aims To Launch Moon Probe This Year
  • China Approves Five-Year Space Development plan
  • US Said To Block US-China Deal On Asian Satellite Operator
  • Space Peonies Blooming In Heze

  • Boeing Orbital Express Completes First Autonomous Free Flight And Capture
  • Robot Teams Handle Hazardous Jobs
  • Mr Roboto
  • Carnegie Mellon Unveils Internet-Controlled Robots Anyone Can Build

  • Mars Rover Spirit Unearths Surprise Evidence Of Wetter Past
  • Breathtaking Views Of Deuteronilus Mensae On Mars
  • Seeking Mars Survival Secrets
  • Not Enough Hours In The Day Then Look To Mars

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement