Subscribe free to our newsletters via your
. Space Travel News .




TIME AND SPACE
ASU joins pathbreaking radio telescope project to study early universe
by Staff Writers
Phoenix AZ (SPX) Nov 26, 2014


ASU undergraduate students Hamdi Mani (left) and Jose Chavez kneel in front of a telescope antenna tile at the Murchison Widefield Array radio telescope. Hamdi has graduated and now works as an electronics engineer in the School of Earth and Space Exploration. Image courtesy Judd Bowman.

Arizona State University has joined with 14 other institutions in Australia, India, New Zealand and the United States in a radio telescope project that focuses on the early universe and the birth and formation of the first galaxies.

The radio telescope is the Murchison Widefield Array (MWA), located in the Shire of Murchison, Western Australia. The Shire, isolated and sparsely populated, has no villages or towns, and consists of only about 30 cattle and sheep stations (ranches), with a combined population of around 100. These are spread over about 20,000 square miles (50,000 square kilometers).

The telescope is constructed of 2,048 dipole antennas, grouped into four-by-four arrays called tiles. Each dipole antenna spans about 30 inches (74 centimeters). Most of the tiles (112) scatter across a core section 1 mile (1.5 kilometers) in diameter, with the remaining 16 tiles placed outside the core, yielding baseline distances of about 2 miles (3 kilometers).

The antennas and receivers operate at low radio frequencies and are optimized for radio waves in the 80-300 Megahertz range - the same frequencies used for FM radio and broadcast TV. Hence, Murchison's geographic isolation provides great advantages.

"A dense-core-plus-outliers arrangement gives sensitive, wide-field views from the central tiles," says Judd Bowman, associate professor of astronomy in the School of Earth and Space Exploration and project scientist for the telescope array.

"And the outliers provide high-resolution imaging for solar outbursts and extragalactic sources, other areas of focus in the telescope's scientific program."

Research opportunities for ASU astronomers
The telescope program will provide many opportunities for scientists, researchers and students in the school, Bowman says. "As a partner institution in the telescope, any faculty member at ASU can join the project and receive access to observing data."

Three ASU undergraduates traveled with Bowman to Australia to help with the construction and commissioning of the telescope and related experiments at the site. The telescope is already being used by graduate students and two postdoctoral scholars at ASU for their research.

For example, ASU researchers are currently using the telescope to search for traces of relic radio waves from primordial gas surrounding the first stars and galaxies at a time, more than 13 billion years ago, when the universe was less than a billion years old.

Bowman says, "This telescope complements very well the observational cosmology efforts already underway at ASU to observe the oldest galaxies in the universe. With the MWA, while we won't see the galaxies themselves, we hope to detect the cosmic fingerprints those galaxies left in the intergalactic gas around them."

Danny Jacobs, NSF Postdoctoral Fellow in the School of Earth and Space Exploration, is helping to coordinate the analysis of more than a thousand terabytes of data already acquired by the telescope. "The MWA is fixed to the ground and sees the entire sky," he explains. To unpack the signals and extract the data requires powerful computer processing. "To an unprecedented degree, the MWA is a software telescope. We're really pushing the limits of what our computers can do."

The Murchison Widefield Array has four elements, or research avenues, that make up its scientific program.

These are:

(1) exploration of the Cosmic Dawn and epoch of reionization, the period when the first stars and galaxies formed in the early universe;

(2) radio emission from the Milky Way Galaxy and extragalactic sources, which is both a complicating foreground "fog" for observations and an interesting scientific target of its own;

(3) searching for transient and variable radio events that are rare and faint, and which occur on timescales from seconds to months; and

(4) space weather, the study of solar outbursts as they travel from the sun's surface to Earth.

Along with ASU's new role in the project, Bowman notes, the School of Earth and Space Exploration is hosting an international scientific conference in December 2014. It will be based around the Murchison Widefield Array and the initial science results from both it and other low-frequency radio telescopes.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Murchison Widefield Array (MWA)
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Spooky alignment of quasars across billions of light-years
Liege, Belgium (SPX) Nov 24, 2014
Quasars are galaxies with very active supermassive black holes at their centres. These black holes are surrounded by spinning discs of extremely hot material that is often spewed out in long jets along their axes of rotation. Quasars can shine more brightly than all the stars in the rest of their host galaxies put together. A team led by Damien Hutsemekers from the University of Liege in B ... read more


TIME AND SPACE
Elon Musk unveils 'drone ship' and 'x-wing' fins for rockets via Twitter

Russian Rocket Supply for Satellites Launches Continues

China launches Yaogan-24 remote sensing satellite

Soyuz Installed at Baikonur, Expected to Launch Wednesday

TIME AND SPACE
Within Rover's Reach at Mars Target Area 'Alexander Hills'

Mars Exploration Program Director Named

Second Time Through, Mars Rover Examines Chosen Rocks

Mars was warm enough for flowing water, but only briefly

TIME AND SPACE
Young Volcanoes on the Moon

U.K. group to crowd-source funding for moon mission

After Mars, India space chief aims for the moon

China examines the three stages of lunar test run

TIME AND SPACE
Pluto's Exotic Chemistry

Clues Revealed About Hidden Interior of Uranus

New Horizons Set to Wake Up for Pluto Encounter

Hubble Telescope Finds Potential Kuiper Belt Targets for New Horizons Pluto Mission

TIME AND SPACE
Hot, Super-Earths Help Track Water-Rich Atmospheres

How to estimate the magnetic field of an exoplanet?

Follow the Dust to Find Planets

NASA's TESS mission cleared for next development phase

TIME AND SPACE
European space plane set for February launch: firm

NASA Selects Student Teams for High-Powered Rocket Challenge

3-D Printed Engine Parts Withstand Hot Fire Tests

Swiss Space Systems concludes first phase of drop-tests

TIME AND SPACE
China expects to introduce space law around 2020

China launches new remote sensing satellite

China publishes Earth, Moon photos taken by lunar orbiter

China plans to launch about 120 applied satellites

TIME AND SPACE
NASA contracts two firms to work on asteroid mining

Rosetta Comet Landing in 'Thud' and 3D

Asteroid Mining Could Make For Boom Times

Philae probing comet with hours left on battery




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.