Subscribe free to our newsletters via your
. Space Travel News .




SKY NIGHTLY
ALMA Sees Einstein Ring in Stunning Image of Lensed Galaxy
by Staff Writers
Charlottesville NC (SPX) Apr 10, 2015


ALMA image of the gravitationally lensed galaxy SDP.81. The bright orange central region of the ring (ALMA's highest resolution observation ever) reveals the glowing dust in this distant galaxy. The surrounding lower-resolution portions of the ring trace the millimeter wavelength light emitted by carbon monoxide. Image courtesy ALMA (NRAO/ESO/NAOJ); B. Saxton NRAO/AUI/NSF.

Astronomers have discovered that a distant galaxy - seen from Earth with the aid of a gravitational lens - appears like a cosmic ring, thanks to the highest resolution images ever taken with the Atacama Large Millimeter/submillimeter Array (ALMA).

Forged by the chance alignment of two distant galaxies, this striking ring-like structure is a rare and peculiar manifestation of gravitational lensing as predicted by Albert Einstein in his theory of general relativity.

Gravitational lensing occurs when a massive galaxy or cluster of galaxies bends the light emitted from a more distant galaxy, forming a highly magnified, though much distorted image. In this particular case, the galaxy known as SDP.81 and an intervening galaxy line up so perfectly that the light from the more distant one forms a nearly complete circle as seen from Earth.

Discovered by the Herschel Space Observatory, SDP.81 is an active star-forming galaxy nearly 12 billion light-years away, seen at a time when the Universe was only 15 percent of its current age. It is being lensed by a massive foreground galaxy that is a comparatively nearby 4 billion light-years away.

"Gravitational lensing is used in astronomy to study the very distant, very early Universe because it gives even our best telescopes an impressive boost in power," said ALMA Deputy Program Scientist Catherine Vlahakis. "With the astounding level of detail in these new ALMA images, astronomers will now be able to reassemble the information contained in the distorted image we see as a ring and produce a reconstruction of the true image of the distant galaxy."

The new SDP.81 images were taken in October 2014 as part of ALMA's Long Baseline Campaign, an essential program to test and verify the telescope's highest resolving power, achieved when the antennas are at their greatest separation: up to 15 kilometers apart.

The highest resolution image of SDP.81 was made by observing the relatively bright light emitted by cosmic dust in the distant galaxy. This striking image reveals well-defined arcs in a pattern that hints at a more complete, nearly contiguous ring structure. Other slightly lower-resolution images, made by observing the faint molecular signatures of carbon monoxide and water, help complete the picture and provide important details about this distant galaxy.

Though this intriguing interplay of gravity and light in SDP.81 has been studied previously by other observatories, including radio observations with the Submillimeter Array and the Plateau de Bure Interferometer, and visible light observations with the Hubble Space Telescope, none has captured the remarkable details of the ring structure revealed by ALMA.

"The exquisite amount of information contained in the ALMA images is incredibly important for our understanding of galaxies in the early Universe," said astronomer Jacqueline Hodge with the National Radio Astronomy Observatory in Charlottesville, Va.

"Astronomers use sophisticated computer programs to reconstruct lensed galaxies' true appearance. This unraveling of the bending of light done by the gravitational lens will allow us to study the actual shape and internal motion of this distant galaxy much more clearly than has been possible until now."

For these observations, ALMA achieved an astounding maximum resolution of 23 milliarcseconds, which is about the same as seeing the rim of a basketball hoop atop the Eiffel Tower from the observing deck of the Empire State Building.

"It takes a combination of ALMA's high resolution and high sensitivity to unlock these otherwise hidden details of the early Universe," said ALMA Director Pierre Cox. "These results open a new frontier in astronomy and prove that ALMA can indeed deliver on its promise of transformational science."

SDP.81 is one of five targets selected for study during the ALMA Long Baseline Campaign. The others include the protoplanetary disk HL Tau, the asteroid Juno, the star Mira, and the quasar 3C138. Papers describing these publicly available data and the overall outcome of the ALMA Long Baseline Campaign are to be published in the Astrophysical Journal, Letters.

The paper, "ALMA Long Baseline Observations of the Strongly Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z=3.042," is located here.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Atacama Large Millimeter/submillimeter Array (ALMA).
Astronomy News from Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SKY NIGHTLY
Astronomers Upgrade Their Cosmic Light Bulbs
Pasadena CA (JPL) Mar 30, 2015
The brilliant explosions of dead stars have been used for years to illuminate the far-flung reaches of our cosmos. The explosions, called Type Ia supernovae, allow astronomers to measure the distances to galaxies and measure the ever-increasing rate at which our universe is stretching apart. But these tools aren't perfect. In the cosmic hardware store of our universe, improvements are ongo ... read more


SKY NIGHTLY
THOR 7 encapsulation as next Ariane 5 campaigns proceeds

Soyuz Installed at Baikonur, Expected to Launch Wednesday

Soyuz ready March 27 flight to deploy two Galileo navsats

UAE Moves to Purchase Russian Spacecraft Launch Platform

SKY NIGHTLY
Team Returning Orbiter to Duty After Computer Swap

More evidence for groundwater on Mars

Scars on Mars from 2012 Rover Landing Fade - Usually

Bill Nye and others discussing taking humans to Mars by 2033

SKY NIGHTLY
Moon formed when young Earth and little sister collided

Will the moon's first inhabitants live in giant lava tubes?

Soft Landing on the Moon an Extraordinary Challenge

Stop blaming the moon

SKY NIGHTLY
New Horizons Sampling 'Space Weather' on Approach to Pluto

Help Name New Features on Pluto

Name the features on Pluto and its moon Charon

Science Shorts: Why Pluto?

SKY NIGHTLY
Earthlike 'Star Wars' Tatooines may be common

Planets in the habitable zone around most stars, calculate researchers

Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

SKY NIGHTLY
IXV test flight total success says operations manager

ESA's spaceplane back on dry land

Falcon 9 Evolves

Lockheed Martin buys high-speed wind tunnel

SKY NIGHTLY
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

SKY NIGHTLY
NASA Releases Tool Enabling Citizen Scientists to Examine Asteroid Vesta

Dawn orbiting high over the night side of Ceres

OSIRIS-REx Mission Passes Critical Milestone

Scary times for Europe's comet-chaser Rosetta




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.