Subscribe free to our newsletters via your
. Space Travel News .




TIME AND SPACE
ALMA reveals mild environment around super black hole
by Staff Writers
Tokyo, Japan (SPX) Feb 27, 2015


The central part of the galaxy M77, also known as NGC1068, observed by ALMA and the NASA/ESA Hubble Space Telescope. Yellow: cyanoacetylene (HC3N), Red: carbon monosulfide (CS), Blue: carbon monoxide (CO), which are observed with ALMA. While HC3N is abundant in the central part of the galaxy (CND), CO is mainly distributed in the starburst ring. CS is distributed both in the CND and the starburst ring. Image courtesy ALMA(ESO/NAOJ/NRAO), S. Takano et al., NASA/ESA Hubble Space Telescope and A. van der Hoeven. For a larger version of this image please go here.

A research team led by Shuro Takano at the National Astronomical Observatory of Japan (NAOJ) and Taku Nakajima at Nagoya University observed the spiral galaxy M77, also known as NGC1068, with the Atacama Large Millimeter/submillimeter Array (ALMA) and discovered that organic molecules are concentrated in a region surrounding a supermassive black hole at its center.

Although these molecules around a black hole are thought to be dissociated by strong X-rays and UV photons, the research results indicate that some regions are shielded from X-rays and UV photons due to a large amount of dust and gas. These results, which were made possible by the high sensitivity and wideband observing capability of ALMA, will be a key to understanding the mysterious environment around supermassive black holes.

Research Background
Interstellar gas contains a wide variety of molecules and its chemical composition differs widely depending on the environment. For example, an active star forming region with a temperature higher than the surrounding environment stimulates the production of certain types of molecules by chemical reactions which are difficult to take place in a cold temperature region.

This enables us to probe the environment (e.g. temperature and density) of a target region by studying the molecular chemical compositions in the region. Since each molecule has its own frequency spectrum, we can identify the chemical composition and the environment of a remote target object through observations with a radio telescope.

From this perspective, astronomers have been actively working on the starburst regions of galaxies [1] and the active galactic nuclei (AGN) at the center of galaxies, which are called circumnuclear disks (CND) [2]. These regions are very important in understanding the evolution of galaxies, and radio observations of molecular emissions are essential to explore the mechanism and environment of these regions [3].

However, the weak radio emission from molecules often made the observations difficult and took us many days for signal detection using conventional radio telescopes.

ALMA Observations
A research team led by Shuro Takano at the National Astronomical Observatory of Japan (NAOJ) and Taku Nakajima at Nagoya University observed the spiral galaxy M77 in the direction of the constellation Cetus (the Whale) about 47 million light years away with ALMA. M77 is known to have an active galactic nucleus (AGN) at its center which is surrounded by a starburst ring with a radius of 3500 light years.

Since the research team had already conducted radio observations of various molecular emissions in this galaxy with the 45-m telescope at the Nobeyama Radio Observatory of NAOJ, they aimed to develop their research further with ALMA and identify the difference in chemical composition between AGNs and starburst regions.

ALMA is a telescope suitable for analyzing molecules in galaxies because of: 1) a high sensitivity to detect faint radio signals; 2) a high fidelity imaging capability to image actual gas distributions; 3) the ability to observe wideband multiple wavelengths simultaneously, and high spatial resolution.

ALMA observations revealed clearly the distributions of nine types of molecules in the CND and in the starburst ring. "In this observation, we used only 16 antennas, which are about one-fourth of the complete number of ALMA antennas, but it was really surprising that we could get so many molecular distribution maps in less than two hours. We have never obtained such a quantity of maps in one observation," says Takano, the leader of the research team.

The observational results show that the molecular distribution varies according to the type of molecule. While carbon monoxide (CO) is distributed mainly in the starburst ring, five types of molecules, including complex organic molecules such as cyanoacetylene (HC3N) and acetonitrile (CH3CN), are concentrated in the CND. And In addition, carbon monosulfide (CS) and methanol (CH3OH) are distributed both in the starburst ring and the CND. ALMA provided the first high resolution observation of the five types of molecules in M77, and revealed that they are concentrated in the CND.

"It was quite unexpected that acetonitrile (CH3CN) and cyanoacetylene (HC3N), which have a large number of atoms, are concentrated in the CND," says Nakajima. The supermassive black hole in the AGN devours surrounding materials by its strong gravity and generates a disk around the black hole.

The disk will be heated to a high temperature and emit intense X-rays or UV photons. When an organic molecule with multiple atomic linkages is exposed to strong X-rays or UV photons, the atomic bonding will be broken and the molecule will be destroyed. This is why the CND was thought to be a very difficult environment for organic molecules to survive. However, this ALMA observation proved the contrary; organic molecules are abundant in the CND.

The research team assumes that organic molecules remain intact in the CND due to a large amount of gas which is shielded from X-rays and UV photons, while organic molecules cannot survive the exposure to the strong UV photons in the starburst region where the gas density is lower compared with the CND.

Researchers have been actively engaged in observational research and the establishment of theoretical models of AGNs, but it is just the beginning of the study on the shielding effect on molecules, which was discovered by these ALMA observations. These results were a significant first step in understanding the structure, temperature and density of gas surrounding the AGN.

"We expect that future observations with wider bandwidth and higher resolution will show us the whole picture of our target object in further detail and achieve even more remarkable results," says Takano.

Notes
[1] In the Milky Way Galaxy, in which we live, one sun-like star is generated per year on average, while several hundred sun-like stars are churned out each year in a starburst region.

[2] It is believed that most galaxies have in their center a supermassive black hole of millions to hundreds of millions of solar mass. Among them, Active Galactic Nuclei (AGN) represents a type of supermassive black hole which are gulping down surrounding gas very actively and emitting some amount of gas as a high-speed gas flow (jet).

[3] For example, a research team led by Takuma Izumi and Kotaro Kohno at the University of Tokyo, both of whom are engaged in this research, suggests that there is enhanced emission of hydrogen cyanide (HCN) from the supermassive black hole in the barred spiral galaxy NGC1097 by past ALMA observations.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
ALMA
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Astronomers find impossibly large black hole
Canberra, Australia (SPX) Feb 26, 2015
An international team of astronomers have found a huge and ancient black hole which was powering the brightest object early in the universe. The black hole's mass is 12 billion times that of the Sun, and it lives at the centre of a quasar that pumped out a million billion times the energy of our Sun. Team member Dr Fuyan Bian, from the Research School of Astronomy and Astrophysics at ... read more


TIME AND SPACE
Soyuz-2.1a Rocket Takes Military Satellite to Designated Orbit

Russia's Vostochny Cosmodrome Construction Reaches Home Stretch

Next Launch of Heavy Angara-5 Rocket Due Next Year

SES Announces Two Launch Agreements With SpaceX

TIME AND SPACE
Curiosity confirms methane in Mars' atmosphere

NASA's Curiosity Mars Rover Drills at 'Telegraph Peak'

How Can We Protect Mars From Earth, While Searching For Life

The Search For Volcanic Eruptions On Mars Reaches The Next Level

TIME AND SPACE
Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

TIME AND SPACE
Pluto Science, on the Surface

Science Shorts: How Big Is Pluto's Atmosphere?

New Horizons Spots Small Moons Orbiting Pluto

The View from New Horizons: A Full Day on Pluto-Charon

TIME AND SPACE
Planets Can Alter Each Other's Climates over Eons

The mystery of cosmic oceans and dunes

Laser 'ruler' holds promise for hunting exoplanets

Scientists predict earth-like planets around most stars

TIME AND SPACE
Orion test flight yields critical data for next mission

NASA, Orbital ATK preparing solid tocket booster avionics

IXV Spaceplane misison a boost Thales Alenia Space

A Composite Booster Gets a Burst of Energy

TIME AND SPACE
Argentina welcomes first Chinese satellite tracking station outside China

More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

TIME AND SPACE
Dawn begins exploration of the first dwarf planet

Dark Energy Camera catches breathtaking glimpse of comet Lovejoy

'Bright Spot' on Ceres Has Dimmer Companion

OSIRIS-REx Mission Completes System Integration Review




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.